Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Схемы включения операционных усилителей



Как уже упоминалось выше, нормальная работа ОУ в линейном режиме возможна только в схемах с глубокой ООС. Для понимания работы таких схем полезно понятие виртуального, или мнимого, заземления.

Инвертирующий усилитель. Рассмотрим схему на рис. 5.

Рис.5 Инвертирующий усилитель Рис. 6. Неинвертирующий усилитель

Потенциал на неинвертирующем входе U B = 0. Так как ОУ находится в линейном режиме, из (1) следует U B - U A = U вых 0. Например, при U вых ~ 5В, К 0 ~2× 10 5 получаем U A ~ 25 мкВ. Такое малое напряжение (оно сравнимо с величиной термо-э.д.с. при DT~1°C) даже невозможно измерить обычным цифровым вольтметром. Отсюда следует, что потенциалы на входах ОУ можно с хорошей точностью считать равными. Если один из входов ОУ заземлить, на втором входе будет также поддерживаться нулевой потенциал, хотя напрямую входы ОУ гальванически не связаны. Этот эффект называется виртуальным, или мнимым, заземлением. Таким образом, из U В = 0 следует U А = 0, U вх -DU A = U вх (падение напряжения на R 1 ); U вых -DU A = U вых (падение напряжения на R 2 ). Поскольку входной ток ОУ очень мал (I вх- < < I 1 ), им можно пренебречь, тогда получим I 1 = U вх /R 1 = -U вых /R 2. Это означает, что для инвертирующего усилителя KОС = Uвых/Uвх = -R2/R1. Для минимизации влияния токов смещения вход " +" заземляется через резистор R 3 » R 1 ||R 2.

Входное сопротивление этой схемы равно Rвх.ОС = R1, так как U А = 0 (мнимое заземление).

Выходное сопротивление Rвых.ОС = 0, так как R вых.ОС = dU вых /dI вых, а U вых = -(R 2 /R 1 )× U вх от I вых не зависит. Это не означает, конечно, что к выходу ОУ можно подключать нагрузку сколь угодно малого сопротивления, так как I вых.max ограничен: R н.min = U вых /I вых.max, т. е. минимальное сопротивление нагрузки на выходе ОУ зависит от амплитуды выходного напряжения. Как видим, понятие мнимого заземления и идеализация ОУ (I вх = 0, К 0 = ¥ ) существенно облегчают анализ схем включения ОУ, а точный расчет может добавить только члены порядка К ОС 0 < < 1, например для выходного сопротивления вместо нуля будем иметь

R вых.ОС = . (2)

При R вых = 200 Ом, К = 2·10 5, R 2 /R 1 »10 R вых.ОС »2·10  -2 Ом сопротивление обычного медного провода диаметром 0.3 мм и длиной всего 5 см!

Неинвертирующий усилитель можно получить, подавая сигнал на неинвертирующий вход, а цепь ООС на инвертирующий, как показано на рис. 6. Напряжение ОС снимается с делителя: U A = U вых· R 1 /(R 1 +R 2 ). Так как U A = U вх, коэффициент усиления KОС = Uвых/Uвх = 1 + R2/R1.

Входное сопротивление схемыRвх.ОС = Rвх·К·R1/(R1 + R2) – как всегда при последовательной ООС входное сопротивление увеличивается. Выходное сопротивление Rвых.ОС » 0.

Рис.7

Аналоговый сумматор. На ОУ легко реализовать аналоговый суммирующий усилитель (рис. 7). По первому закону Кирхгофа с учетом мнимого заземления получаем I 1 + I 2 + I 3 = I ОС;

.

Если величины сопротивлений R 1, ... R n выбрать равными, то на выходе получим сумму входных напряжений. Если же R 1, ... R n взять кратными степени двойки: R n = R·2 n-1, а на входы U n через ключи, управляемые цифровым кодом, подать эталонное напряжение, то получим простейший цифро-аналоговый преобразователь ЦАП.

Аналоговый интегратор. Рассмотрим схему на рис. 8, а. Ток I вх = I R = U вх /R = I C = C·dU C /dt (мнимое заземление). Следовательно, с учетом полярности U C, получаем

, (3)

где U0 напряжение на выходе при t = 0 (емкость C может быть заряжена перед началом интегрирования).

Рис. 8. Интегрирующий (a) и дифференцирующий (б) усилители

Нулевое начальное условие можно задать при помощи управляемого ключа (обычно МОП-транзистора). Если R> > r кл ~50 Ом, то при замкнутом ключе К ОС» 0, U вых = U C = 0; при разомкнутом идет интегрирование. Точность вычисления интеграла определяется коэффициентом усиления К , входными токами ОУ, напряжением смещения U см. Для интеграторов обычно используются ОУ с полевыми транзисторами на входе и конденсаторы с малыми токами утечки.

С помощью интеграторов можно решать обыкновенные дифференциальные уравнения, в том числе нелинейные (аналоговые вычислительные машины).

Дифференцирующий усилитель получается, если R и C поменять местами (рис. 8, б): К ОС (w) = -jwRC = -pRC, где p = jw  отображение операции дифференцирования. Эта схема сравнительно редко используется на практике, так как обладает большим К ОС на высоких частотах и усиливает импульсные наводки и собственные шумы.

Логарифмический усилитель (ЛУ). Для получения логарифмической зависимости U вых ~lg(U вх ) в цепь ОС вводят нелинейный элемент диод или биполярный транзистор (рис. 9, а).

Рис. 9. Логарифмирующий (а) и потенцирующий (б) усилители.

Ток, протекающий в цепи ОС, при I вх- =0, равен коллекторному току транзистора и определяется:

, (4)

где I ко тепловой ток p-n перехода (обратный ток коллектора), U эб напряжение на переходе эмиттер-база, k - постоянная Больцмана, T - температура в град. К, q - заряд электрона, h - постоянная рекомбинации. Величина hkT/q = j т называется температурным потенциалом; j т »26мВ для германия, j т »30мВ для кремния. Для большинства транзисторов I ко < 10  -8 А.

С учетом U эб > 30 мВ, I ко < < I k из (4) следует

. (5)

Потенцирующий усилитель получается, если резистор и транзистор в цепи ОС поменять местами (рис. 9, б). Все расчеты аналогичны.

Так как ЛУ часто применяются для расширения диапазона измеряемых токов (для схемы рис. 9, а этот диапазон составляет 9 декад 10  -9 А < I k < 10  -3 А), в них используются ОУ с полевыми транзисторами, которые тщательно балансируют (при этом зануляется и второй член в (5)). Принимаются также меры для компенсации температурного дрейфа, поскольку в (4) температура входит явно. С помощью ЛУ можно возводить в произвольную степень и перемножать аналоговые сигналы. Точность ЛУ невелика  порядка нескольких процентов. Схемы рис. 9 работают только с однополярными сигналами.

Прецизионный выпрямитель. Полупроводниковые диоды непригодны для выпрямления сигналов амплитудой меньше 1 В, так как для получения заметной проводимости на кремниевые диоды нужно подать смещение примерно 0.7 В, а на германиевые около 0.4 В. Применение ОУ позволяет получать выпрямители, хорошо работающие с сигналами до 1 мВ. Схема однополупериодного выпрямителя приведена на рис. 10, а.

Рис. 10. Однополупериодный выпрямитель

Эпюры напряжений, показанные на рис. 10, б, поясняют работу схемы. При положительном входном сигнале ток течет через диод D 1, а при отрицательном  через диод D 2. Рассуждения, полностью аналогичные тем, что проводились при рассмотрении инвертирующего усилителя, приводят к выводу, что коэффициент передачи U +вых /U вх равен - 1 для отрицательной полуволны на входе, равен 0 для положительной. От характеристик диодов качество выпрямителя практически не зависит, от них требуется только малый обратный ток. Для двухполупериодного выпрямления требуется еще один ОУ для получения суммы {U вх + 2·U +вых } (см. рис. 10, б).

3. Практические задания

По результатам выполнения практических заданий составьте итоговую таблицу для измеренных параметров ОУ (Uсм), (Iвх), (DIвх), (f), (DUсм/DT), (dUвых/dt) в сравнении со справочными данными.

Измерения, имеющие оценочный характер, можно проводить с помощью осциллографа. Это удобно еще и потому, что, если ОУ возбудится, то сразу будет видно. Но для точности следует использовать цифровой или стрелочный вольтметр, а по осциллографу контролировать возбуждение.

3.1. Измерение (Uсм), (f), (Iвх), (DIвх)

Используя генераторы напряжения, источники питания и стенд С3-ОУ01:

а) соберите схему по рис. 11, а при значениях резисторов R 1 = R 3 = 100 Ом, R 2 = 10 кОм. Заземлите вход. По измеренному U вых, найдите (Uсм) и сравните его со справочными данными. По справочным же данным оцените влияние входных токов смещения. Так как измеряется U см, то напряжение сдвига, вызванное разностью входных токов, должно быть много меньше U см.


Рис. 11. Инвертирующий усилитель (а); балансировка ОУ по входу (б)

б) Для компенсации смещения нуля по измеренному U см рассчитайте величину резистора R x, а по знаку U см полярность напряжения питания, к которому его следует подключить (рис.11, б; +/-Eп). Сбалансируйте ОУ.

в) Подайте на вход инвертирующего усилителя (R ) синусоидальный сигнал частотой 500Гц, такого уровня, чтобы выходной сигнал имел максимальную неискаженную амплитуду. Изменив частоту входного сигнала на 64кГц, постройте ЛАЧХ, подобный рис. 4. Определите частоту единичного усиления (f).

г) Разомкните цепь ООС, т. е. уберите R 2 , заземлите вход и пронаблюдайте выходной сигнал при поднесении руки к входным цепям ОУ. Объясните результат.

д) Не меняя положения движка R 4, отсоедините его от схемы и измерьте сопротивление между средним и нижним выводами (R y ). Вычислите падение напряжения на R y (компенсирующее напряжение) и сравните результат с предыдущим (пункт а).

е) Для сбалансированного ОУ, когда на среднем выводе переменного резистора R 4 установлено напряжение, равное ( U см ); замените резистор R 3 на номинал 10кОм. Измерив U вых, вычислите (Iвх+) и сравните результат со справочными данными.

ж) Замените резистор R 1 тоже на 10кОм, а R 2 на 1МОм. По измеренному U вых оцените разность входных токов (DIвх).


Поделиться:



Популярное:

  1. Автоматизированная форма бухгалтерского учета, схемы учетной регистрации, преимущества и недостатки.
  2. Автоматическое включение генераторов на параллельную работу. Способы включения генераторов, уравнительные токи и моменты
  3. Анализ словесного состава предложения. Выкладывание схемы предложения
  4. Арбитражный процесс: Схемы и комментарии
  5. В задачах 392–420 определить электродвижущую силу элементов, написать уравнения реакций, за счет которых возникает разность потенциалов. Составить схемы элементов
  6. Влияние схемы соединения обмоток на работу трехфазных трансформаторов в режиме холостого хода
  7. Внутрицитоплазматические включения
  8. Выбор геометрической схемы фермы, определение длин стержней
  9. Выбор и описание тепловой схемы котельной
  10. Выбор системы и схемы внутреннего водопровода
  11. ВЫБОР СХЕМЫ И КОНСТРУКТИВНОГО ИСПОЛНЕНИЯ РАСПРЕДЕЛИТЕЛЬНОЙ СЕТИ
  12. ВЫБОР СХЕМЫ ЭЛЕКТРОСНАБЖЕНИЯ


Последнее изменение этой страницы: 2017-03-03; Просмотров: 1107; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.024 с.)
Главная | Случайная страница | Обратная связь