Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Общая характеристика водных растений



ВВЕДЕНИЕ

Дисциплина «Водные растения» - знакомит студентов с водными растениями. К водным растениям - относятся растения, в той или иной степени, связанные с водной средой.

В течение одного семестра 36 лекций и 36 практических работ в конце семестра экзамен.

В связи с этим их делят на экологические группы: гигрофиты, гидрофиты, гидатофиты различных таксонов. Дать представление об условиях произрастания, адаптивных реакциях, особенностях развития, жизнедеятельности, их роли в природных сообществах, их практическое значение.

В воде по сравнению с воздушной средой меньше кислорода, большая плотность, отсутствует опасность иссушения растений от избыточной транспирации, ослаблена интенсивность освещенности, спектральный состав света изменен, иной температурный режим (меньше годичные и суточные колебания, летом температура воды ниже температуры воздуха, а зимой в глубоких слоях выше нулевой). Все это сказывается на обитателях водоемов. Водные растения, в отличие от наземных, поглощают влагу и минеральные соли непосредственно из окружающей воды. Поэтому их организация имеет свои особенности. У них слабо развиты проводящие ткани и корневая система. Корни служат в основном для прикрепления к подводному субстрату, они лишены, как правило, корневых волосков. Мощная корневая система некоторых служит для запасания и вегетативного размножения.

Дисциплина изучает как низшие водные растения, так и высшие цветковые. С учетом морфоструктурных и физиологических адаптаций гидрофиты подразделяются на несколько групп, каждая из которых рассматривается отдельно в ходе изучения дисциплины.

Изучение водной флоры имеет большое научное и народнохозяйственное значение. Разнообразие водных растений расширяет представления о приспособительных свойствах растительных организмов. Умеренное развитие водной растительности полезно для ведения рыбного хозяйства, также при создании и оформлении искусственных водоёмов в ландшафтном дизайне и архитектуре. Фитопланктон служит пищей для мелких водных беспозвоночных, которые, в свою очередь, служат пищей многих рыб. В зарослях водных растений рыбы мечут икру, здесь же растет и развивается молодь рыб, поселяется водоплавающая птица-предмет охотничьего промысла.

Как считают большинство биологов, различия между растениями и животными можно разделить на три группы: 1) по структуре клеток и их способности к росту; 2) способу питания; 3) способности к движению. Отнесение к одному из царств проводится не по каждому признаку, а по совокупности различий. Так, кораллы, речная губка-бодяга всю жизнь остаются неподвижными, и тем не менее, имея в виду другие свойства, их относят к животным. Существуют насекомоядные растения, которые по способу питания относятся к животным. Выделяют и переходные типы, как, скажем, Евглена зеленая, которая питается как растение, а двигается, как животное. И все же три отмеченные группы различий помогают в подавляющем большинстве случаев. Кристаллы растут, но не воспроизводятся; растения воспроизводятся, но не двигаются; животные двигаются и воспроизводятся. В то же время у растений некоторые клетки сохраняют способность к активному росту на протяжении всей жизни организма. В пластидах – белковых телах клеток растений – заключен хлорофилл. Его наличие связано с основной космической функцией растений – улавливанием и превращением солнечной энергии. Эта функция определяет строение растений. «Свет лепит формы растений, как из пластического материала», – писал австрийский ботаник И. Визнер. По словам Вернадского, «в биосфере видна неразрывная связь между освещающим ее световым солнечным излучением и находящимся в ней зеленым живым миром организованных существ» (В. И. Вернадский. Биосфера. Избр. соч. Т. 5. М., 1960, с. 23). У животных клеток есть центриоли, но нет хлорофилла и клеточной стенки, мешающей изменению формы. Что касается различий в способе питания, то большинство растений необходимые для жизни вещества получают в результате поглощения минеральных соединений. Животные питаются готовыми органическими соединениями, которые создают растения в процессе фотосинтеза. В ходе развития биосферы происходила дифференциация органов по функциям, которые они выполняют, и возникли двигательная, пищеварительная, дыхательная, кровеносная, нервная системы и органы чувств. В ХVIII–XIX веках ученые потратили много усилий для систематизации всего многообразия растительного и животного мира. Появилось направление в биологии, получившее название систематики, были созданы классификации растений и животных в соответствии с их отличительными признаками. Основной структурной единицей был признан вид, а более высокие уровни составили последовательно род, отряд, класс. На Земле существует 500 тыс. видов растений и 1, 5 млн видов животных, в том числе позвоночных – 70 тыс., птиц – 16 тыс., млекопитающих – 12 540 видов. Подробная систематизация различных форм жизни создала предпосылки для изучения живого вещества как целого, что впервые и осуществил выдающийся русский ученый Вернадский в своем учении о биосфере.

 

Основные различия между растениями и животными:

1. Строение клетки - именно это лежит в основе основ отличия. Растительная клетка разительно отличается от животной и именно на клеточной уровне начинаются отличия растений от животных. У растительной клетки очень прочная оболочка, она содержит особое вещество - целлюлозу, такой оболочки у клетки нет ни у одного животного. Так же, растительная клетка содержит особые структуры - пластиды, их нет у животной клетки (исключение - эвглена зелёная, она содержит хлоропласты). Так же запасающими веществами у растительной клетки являются крахмальные зерна. У житовотных запасающие вещества - гликоген. Также, у растительной клетки вакуоли очень крупные, заполнены клеточным соком, который несет запасающую функцию, а у животных клеток вакуоли маленькие и выполняют функции фаго- и пиноцитоза. Химический состав клетки у животных и растений разный.

2. Тип питания - способ, который позволяет получат органические вещества из окружающей среды. Растения - автотрофы-фототрофы, т.е. они сами производят органические вещества используя при этом энергию солнечного света - процесс фотосинтеза. В органических веществах извне не нуждаются (есть исключения в виде некоторых видов паразитических растений - Петров крест, Повилика, частично Омела, а так же некоторые хищные растения (Росянка, Венерина мухоловка, Непентес-кувшиночник), однако, они могут фотосинтезировать при отсутствии добычи). Животные же нуждаются в готовых органических веществах извне и к самостоятельному производству органик не способны (исключение - Эвглене зелёная).

3. Рост всю жизнь - растения неограниченны в росте, они растут всю жизнь, а вот животные растут только в определённый период жизни, а потом останавливаются в росте массы.

4. Образ жизни - большинство растений ведут сидячий, неподвижный образ жизни. Но и ряд животных делает так же. Однако, среди растений это норма, а среди животных - исключение (например, Коралловые полипы во взрослой стадии).

5. Способ питания (не путать с типом питания) - растения могут всасывать только растворенные в воде минеральные вещества. А животные усваивают и твердую пищу, часто подвергая её дополнительной переработке.

 

Тема № 2. СТРОЕНИЕ ВОДОРОСЛЕЙ.

Основные типы морфологической структуры

Таллома водорослей

В отличие от высших растений, целиком и полностью характеризующихся одним листостебельным типом строения (другая структура у них вызвана вторичным упрощением), водоросли в пределах слоевцового типа строения обнаруживают исключительное морфологическое разнообразие. Тело водорослей, как уже упоминалось, может быть всех четырех степеней сложности, вообще известных для организмов, - одноклеточным, колониальным, многоклеточным и неклеточным. Размеры их в пределах каждой из этих форм отличаются огромным диапазоном - от микроскопических до очень крупных. Так, некоторые виды одноклеточной сине-зеленой водоросли синехоцистис (Synechocystis) едва достигают 1 мкм, одноклеточные зеленые водоросли из рода хлорелла (Chlorella) могут быть в 2 мкм, а длина клеток, образующих междоузлия в стеблевидных талломах харовых водорослей, часто составляет 15-20 см.

Однако самыми крупными размерами отличаются многоклеточные морские бурые водоросли, слоевища которых у отдельных видов, например у макроцистиса (Macrocystis pyrifera), могут достигать в длину 30-45 м.

Водоросли поражают многообразием своего внешнего облика. Вместе с тем все это исключительное многообразие имеет в своей основе несколько хорошо обособленных типов морфологической структуры, являющихся выражением главнейших ступеней морфологической дифференциации тела водорослей в процессе эволюции. Важно отметить, что эти ступени то в большей, то в меньшей степени повторяются в разных отделах водорослей, что свидетельствует об известном параллелизме эволюционного развития в пределах этих отделов.

В настоящее время различают 9 основных типов морфологической структуры тела водорослей. Из них 4 относятся к одноклеточным формам, 1 - к неклеточным, остальные 4 - к многоклеточным (колониальные формы, будучи существенным этапом на пути усложне-ния организации водорослей, все же являются лишь разновидностью одноклеточного строения).

 

Коккоидный тип структуры

 

Коккоидная структура характеризуется отдельными клетками, снабженными твердой оболочкой и в вегетативном состоянии постоянно лишенными жгутиков или псевдоподиев. Вследствие такого устройства водоросли коккоидной структуры не способны к активному движению (исключение составляют только десмидиевые и диатомовые водоросли, но аппарат движения у них совершенно другой - выделение слизи), они или свободно живут и могут лишь пассивно переноситься водой, или прикрепляются к субстрату. Форма таких клеток необычайно разнообразна - от простой шаровидной до самой причудливой; оболочка у них гладкая или с различными выростами, цельная или пористая и т. д. Многим водорослям коккоидной структуры свойственно образование колоний различной формы, со слизью или без нее.

Коккоидная структура чрезвычайно широко распространена у водорослей и в большей или меньшей степени наблюдается во всех отделах, где имеются одноклеточные формы. В отделе диатомовых водорослей, очень многочисленных и широко распространенных, она является единственной.

 

Структуры

 

Пластинчатая структура характеризуется многоклеточными слоевищами в форме пластинок, состоящих из одного, двух или нескольких слоев клеток. Образование их всегда начинается с нити и происходит в результате продольного деления клеток, составляющих нить. Если возникающие продольные перегородки располагаются строго в одном направлении, то пластинка сохраняется однослойной; при возникновении перегородок, параллельных первоначальной пластинке, образуется два и более клеточных слоев. Двухслойные пластинчатые слоевища у некоторых водорослей еще на начальных стадиях их формирования превращаются в трубку или мешок вследствие расхождения слоев в середине при сохранении их связи по краям. В результате этого внутри образуется полость, а стенки становятся однослойными. Трубчатые слоевища по мере разрастания могут ветвиться.

Пластинчатые водоросли растут либо свободно распростертыми по субстрату, либо прикрепленными к нему в одном месте края пластинки. Они хорошо представлены в отделах зеленых, бурых и красных водорослей.

 

Сифональный тип структуры

 

Сифональная структура представляет собой особый тип строения, свойственный только некоторым водорослям и нередко называемый неклеточным. Отличительной чертой его является отсутствие внутри слоевищ клеточных перегородок при наличии большого количества ядер. Такие слоевища иногда достигают довольно крупных размеров, а внешнее их расчленение может быть очень сложным.

Пресноводные водоросли сифональной структуры имеют вид или слабоветвящихся нитей, различимых простым глазом, или шаровидных телец размером с булавочную головку, снабженных разветвленными ризоидами. Сифональные представители морских водорослей отличаются большим разнообразием внешнего облика и подчас очень сложным расчленением слоевищ, принимающих у некоторых видов подобие деления на стебли, листья и корни. У таких сложных форм внутри обычно образуются впячивания стенок, придающие всему сифону механическую прочность.

Сифональная структура хорошо выражена в отделах зеленых и желто-зеленых водорослей.

 

Харофитный тип структуры

 

Харофитная структура, свойственная только харовым водорослям (отдел Charophyta), характеризуется крупными многоклеточными слоевищами линейно-членистого строения, состоящими из главного побега с ветвями и отходящими снизу ризоидами и сидящих на нем мутовками членистых боковых побегов, у некоторых форм ветвящихся. Места расположения мутовок на главном побеге называют узлами, части главного побега между узлами - междоузлиями. Междоузлия и членики боковых побегов всегда образованы только одной сильно вытянутой клеткой, но у многих видов рода хара (Chara) эти клетки снаружи обрастают еще одним слоем линейно расположенных дополнительных клеток, слагающих так называемую кору.

 

РАЗМНОЖЕНИЕ ВОДОРОСЛЕЙ

Вегетативное размножение

Вегетативное размножение у водорослей может осуществляться несколькими путями: простым делением надвое, множественным делением, почкованием, фрагментацией слоевища, столонами, выводковыми почками, параспорами, клубеньками, акинетами.

Простое деление водорослей. Этот способ размножения встречается только у одноклеточных форм водорослей. Наиболее просто происходит деление у клеток, имеющих амебоидный тип строения тела.

Деление амебоидных форм. Деление амебоидов возможно в любом направлении. Оно начинается с вытягивания тела амебы, и далее на экваторе намечается перегородка, которая делит тело на две более или менее равные части. Деление цитоплазмы сопровождается делением ядра. Иногда делению предшествует переход в неподвижное состояние за счет втягивания ножек, при этом клетка приобретает шаровидную форму. Одновременно протоплазма теряет прозрачность, сократительная вакуоль исчезает. К концу деления происходит вытягивание клетки, ее перешнуровка, затем появляются ложноножки.

Деление жгутиковых форм. У жгутиковых форм встречаются наиболее сложные типы вегетативного размножения. Типы размножения определяются уровнем организации и степенью полярности клеток. У некоторых криптофитовых, золотистых и зеленых водорослей размножение простым делением надвое происходит в подвижном состоянии только по продольной оси и начинается с переднего полюса клетки. Жгутики при этом могут достаться только одной клетке или поровну разделиться между новыми клетками. Клетка, которой не досталось жгутика, образует его сама. У большинства вольвоксовых и евгленовых водорослей во время размножения оболочка клетки ослизняется и деление происходит в неподвижном состоянии. У всех жгутиковых форм, имеющих панцирь, клетки делятся на две равные или неравные части. После разделения старый панцирь сбрасывается и образуется новый.

Деление коккоидных форм. У водорослей с коккоидным типом структуры клеток вегетативное размножение приобретает типичные черты деления неподвижной растительной клетки с хорошо выраженной клеточной оболочкой. По своей простоте оно приближается к амебоидному типу вегетативного размножения и осуществляется простым делением клетки надвое.

Почкование водорослей. Клеткам нитчатых разветвленных водорослей свойственны два пути вегетативного размножения: простым делением надвое и почкованием. Сочетание этих способов размножения обуславливает боковое ветвление нитчатых водорослей.

Фрагментация водорослей. Фрагментация присуща всем группам многоклеточных водорослей и проявляется в разных формах: образование гормогониев, регенерация оторвавшихся частей слоевища, спонтанное отпадание ветвей, отрастание ризоидов. Причиной фрагментации могут быть механические факторы (волны, течение, погрызы животных), отмирание части клеток. Примером последнего способа фрагментации может быть образование у синезеленых водорослей гормогониев. Каждый гормогоний может дать начало новой особи. Размножение частями слоевищ, характерное для красных и бурых водорослей, не всегда приводит к возобновлению нормальных растений. Морские водоросли, растущие на камнях и скалах, нередко частично или полностью разрушаются под действием волн. Их оторвавшиеся фрагменты или целые слоевища не способны снова закрепиться на твердых грунтах из-за постоянного движения воды. Кроме того, органы прикрепления вновь не образуются. Если такие слоевища попадают в спокойные места с илистым или песчаным дном, они продолжают расти, лежа на грунте. Со временем более старые части отмирают и отходящие от них ветви превращаются в самостоятельные слоевища, в подобных случаях говорят о неприкрепленных, или свободноживущих, формах соответствующих видов. Водоросли сильно видоизменяются: ветви их становятся более тонкими, узкими и слабее разветвляются. Неприкрепленные формы водорослей не образуют органов полового и бесполого размножения и могут размножаться только вегетативно.

Размножение побегами, столонами, выводковыми почками, клубеньками, акинетами. У тканевых форм зеленых, бурых и красных водорослей вегетативное размножение приобретает свою законченную форму, которая мало отличается от вегетативного размножения высших растений. Сохраняя способность к регенерации частей слоевища, тканевые формы приобретают специализированные образования, которые выполняют функцию вегетативного размножения. У многих видов бурых, красных, зеленых и харовых водорослей имеются побеги, на которых вырастают новые слоевища. На слоевищах некоторых бурых и красных водорослей развиваются выводковые почки (пропагулы), которые отпадают и прорастают в новые слоевища.

С помощью одноклеточных или многоклеточных зимующих клубеньков происходит сезонное возобновление харовых водорослей. Некоторые нитчатые водоросли (например, зеленые улотриксовые водоросли) размножаются акинетами – специализированными клетками с утолщенной оболочкой и большим количеством запасных питательных веществ. Они способны переживать неблагоприятные условия.

 

Бесполое размножение

 

Бесполое размножение водорослей осуществляется с помощью специализированных клеток – спор. Спорообразование обычно сопровождается делением протопласта на части и выходом продуктов деления из оболочки материнской клетки. При этом перед делением протопласта в нем происходят процессы, ведущие к его омоложению. Выход продуктов деления из оболочки материнской клетки является наиболее существенным отличием настоящего бесполого размножения от вегетативного. Иногда в клетке образуется только одна спора, но и тогда она покидает материнскую оболочку.

Споры обычно образуются в особых клетках, называемых спорангиями, отличающихся от обычных вегетативных клеток размерами и формой. Они возникают как выросты обычных клеток и выполняют только функцию образования спор. Иногда споры образуются в клетках, не отличающихся формой и размерами от обычных вегетативных клеток. Споры также отличаются от вегетативных клеток формой и более мелкими размерами. Количество спор в спорангии колеблется от одной до нескольких сотен. Споры представляют собой расселительную стадию в жизненном цикле водорослей.

В зависимости от строения различают:

зооспоры – подвижные споры зеленых и бурых водорослей, могут иметь один, два, четыре или много жгутиков, в последнем случае жгутики располагаются венчиком у переднего конца споры или парами по всей поверхности;

гемизооспоры – зооспоры, утратившие жгутики, но сохранившие сократительные вакуоли и стигму;

апланоспоры – неподвижные споры, которые одеваются оболочкой внутри материнской клетки;

автоспоры – апланоспоры, имеющие форму материнской клетки;

гипноспоры – неподвижные споры с утолщенными оболочками, предназначенные для переживания неблагоприятных условий среды.

У красных водорослей бесполое размножение осуществляется при помощи моноспор, биспор, тетраспор или полиспор. Моноспоры не имеют жгутика и оболочки. После выхода из материнской клетки, они способны к амебоидному движению. От вегетативных клеток моноспоры отличаются яйцевидной или шаровидной формой, богатым содержанием питательных веществ и интенсивной окраской.

Строение спор и типы спороношения имеют большое значение для систематики водорослей, так как отражают различия в организации предковых форм различных групп водорослей.

 

ЖИЗНЕННЫЙ ЦИКЛ ВОДОРОСЛЕЙ

У одного и того же вида водорослей в зависимости от времени года и внешних условий наблюдаются разные формы размножения (бесполое и половое), при этом происходит смена ядерных фаз (гаплоидной и диплоидной). Исключение составляют виды, лишенные полового процесса. Изменения, претерпеваемые особями вида между одноименными стадиями (моментами жизни), составляют его цикл развития.

У одних видов органы бесполого и полового размножения развиваются на разных особях; тогда растения, образующие споры, называют спорофитами, а растения, производящие гаметы, — гаметофитами. У других водорослей споры и гаметы образуются на одних и тех же растениях; одновременно у таких видов могут существовать и особи, дающие только споры, т. е. спорофиты (порфира). Сейчас растения, способные производить и споры (зооспоры) и гаметы, как правило, называют гаметофитами. Однако во избежание путаницы с настоящими гаметофитами, производящими только гаметы, их лучше называть гаметоспорофитами.

 

Развитие органов размножения того или иного типа у гаметоспорофитов определяется температурой. Например, пластинчатые слоевища одного из видов порфиры (Porphyra tenera) при температуре ниже +15, + 17 °С производят органы полового размножения, а при более высокой температуре— органы бесполого размножения. И у других водорослей гаметы обычно появляются при более низкой температуре, чем споры. При промежуточной температуре развитие тех или иных органов размножения на гаметоспорофитах определяется другими факторами — интенсивностью света, длиной дня, сезонными изменениями химического состава воды или солености (для морских водорослей). Гаметоспорофиты существуют у улотриксовых, ульвовых и кладофоровых из зеленых водорослей, у эктокарповых, хордариевых, сфацеляриевых и пунктариевых из бурых водорослей, бангиевых и некоторых немалиевых из красных.

Спорофиты и гаметофиты (гаметоспорофиты) бывают одинакового строения или разного, и соответственно существуют понятия изоморфной (сходной) и гетероморфной (разной) смены форм развития (чередования поколений). В отношении большинства водорослей неправильно говорить о чередовании поколений спорофитов и гаметофитов (гаметоспорофитов), так как они нередко существуют одновременно. Иногда они могут расти в несколько различных экологических условиях. Например, спорофит порфиры имеет вид ветвящихся нитей из одного ряда клеток, которые внедряются в известковый субстрат (раковины моллюсков, известковые скалы) и предпочитают слабое освещение, проникая на большую глубину. Гаметоспорофит порфиры пластинчатый и растет вблизи уреза воды, в том числе в приливно-отливной зоне.

Разница в строении спорофитов и гаметофитов (гаметоспорофитов) при гетероморфной смене форм развития может быть очень значительной. Гаметоспорофит или гаметофит может быть многоклеточным, высотой в несколько сантиметров, а спорофит — микроскопическим, одноклеточным (акросифония из зеленых). Возможна и обратная картина, когда гаметофит микроскопический и даже одноклеточный, а спорофит достигает в длину 12 м (ламинария японская из бурых). Гаметофиты и спорофиты подавляющего большинства водорослей — самостоятельные растения. У ряда водорослей спорофиты растут на гаметофитах (филлофора Броди из красных) или гаметофиты развиваются внутри слоевищ спорофитов (циклоспоровые из бурых).

Поскольку при половом процессе в результате слияния гамет и их ядер происходит удвоение набора хромосом в ядре, то в последующем в какой-то момент цикла развития наступает редукционное деление ядра (мейоз), в результате которого дочерние ядра получают одинарный набор хромосом. Спорофиты многих водорослей диплоидные, и мейоз в цикле их развития совпадает с моментом образования спор, из которых развиваются гаплоидные гаметоспорофиты или гаметофиты. Такой мейоз называют спорической редукцией (рис. 25, 1).

В спорофитах примитивных водорослей (кладофора, эктокарпус и многие другие) наряду с гаплоидными спорами могут образовываться диплоидные споры, которые снова развиваются в спорофиты. Споры, появляющиеся на гаметоспорофитах, служат для воспроизведения материнских растений. Спорофиты и гаметофиты водорослей, стоящих на верхних ступенях эволюции, строго чередуются без самовозобновления (ламинариевые из бурых, многие флоридеи из красных).

Ряд водорослей имеют мейоз в зиготе, т. е. зиготическую редукцию (рис. 25, 2). Она характерна для конъюгат из зеленых водорослей.

Зиготы части пресноводных зеленых водорослей, таких, как вольвоксовые, улотриксовые и др., представляют собой одноклеточные спорофиты. Они производят до 32 зооспор, что по массе во много раз больше, чем пара родительских гамет. Таким образом, у этих водорослей, по существу, наблюдается спорическая редукция.

Некоторые группы водорослей имеют гаметическую редукцию, которая характерна для царства животных. Мейоз происходит при образовании гамет, остальные клетки всегда диплоидные (рис. 25, 3). Такая смена ядерных фаз присуща диатомовым и циклоспоровым водорослям, а также одному из видов кладофоры (Cladophora glomerata). Интересно отметить, что диатомовые преобладают по количеству видов над другими водорослями и встречаются во всех местообитаниях, где только способны расти водоросли. В свою очередь, циклоспоровые относятся к наиболее массовым морским водорослям. Видимо, цикл развития с гаметической редукцией дает этим водорослям какие-то преимущества. У зеленой водоросли празиолы (Prasiola stipitata) обнаружена соматическая редукция — мейоз совершается в вегетативных клетках верхней части диплоидного гаметофита, при этом появляются участки гаплоидных клеток, в которых вслед за тем образуются гаплоидные гаметы (рис. 25, 4).

В цикле развития водорослей, лишенных полового размножения (сине-зеленые, криптофитовые и эвгленовые) или имеющих его в редких случаях (золотистые, желто-зеленые и динофитовые), наблюдаются только изменения в строении тела. Поэтому применительно к таким водорослям принято говорить о цикломорфозе. Он может охватывать несколько поколений или ограничиваться периодом роста и развития одной особи. В наиболее резкой форме цикломорфоз выражен у гиеллы дернистой (Hyella caespitosa) из сине-зеленых водорослей и у гленодиниума Борге (Glenodinium borgei) из динофитовых.

Как циклы развития, так и цикломорфозы у водорослей отличаются большой пластичностью. Их прохождение во многом определяется экологическими условиями. Поэтому они далеко пе всегда сопровождаются строго последовательным проявлением всех стадий. В зависимости от условий произрастания отдельные стадии и формы развития могут выпадать полностью (например, спорофит или гаметоспорофит и гаметофит) или, наоборот, существовать на протяжении нескольких поколений, с тем чтобы на период жизни одного поколения уступить место другой форме развития. Строго упорядоченные циклы развития существуют у водорослей, стоящих на верхних ступенях эволюции (рис. 26).

 


 

Соотношение диплоидной и гаплоидной фаз в жизненном цикле разных водорослей неодинаково.

1. В одних случа­ях прорастание зиготы сопровождается редукционным делением конуляционного ядра ( зиготическая редукция ) и развивающиеся при этом растения оказываются гаплоидными. Так, у многих зеленых водорослей (вольвокальные, большинство хлорококкальных, ко-нъюгатофициевые, харофициевые) зигота —единственная диплоидная стадия в цикле развития, вся вегетативная жизнь проходит у них в гаплоидном состоянии, они являются гаплонтами.

2. У других водорослей, наоборот, вся вегетативная жизнь осуще­ствляется в диплоидном состоянии, а гаплоидная фаза представлена лишь гаметами, перед образованием которых и происходит редукционное деление ядра ( гаметическая редукция ). Зигота без редукционного деления ядра прорастает в диплоидный таллом. Эти водоросли— диплонты. Таковы многие зеленые водоросли, имеющие сифоновое строение, все диатомовые, из бурых — представители порядка фукальные.

3. У третьих редукционное деление ядра предшествует образованию зооспор или анланоспор, развивающихся, как правило, на диплоидных талломах (спорическая редукция). Эти клетки бесполого размножения вырастают в гаплоидные растения, размножающиеся только половым путем. После слияния гамет зигота развивается в диплоидное растение, несущее только органы бесполого размножения. Таким образом, у этих водорослей имеет место чередование форм развития (генераций): диплоидного бесполого спорофита и гаплоидного полового гаметофита. Оба поколения могут быть одинаковы морфологически ( изоморфная смена генераций) или же резко различны по внешнему виду ( гетероморфная смена генераций). Изоморфная смена генераций характерна для морских видов ульвы, энтероморфы, кладофоры, хетоморфы из зеленых водорослей, для ряда порядков бурых и большинства красных водорослей (несколько усложненная), Гетероморфная смена генера­ций особенно распространена среди бурых водорослей, но встреча­ется у зеленых и красных.

 

Абиотические факторы

 

К абиотическим факторам относятся: температура, свет, физические и хими­ческие свойства воды и субстрата, состояние и состав воздушных масс (что особенно важно для аэрофитных водорослей, живущих вне водных условий) и некоторые другие.

Всю совокупность абиотических факторов можно, с известной долей условности, разделить на химические и физические.

 

Химические факторы

 

Вода, как лимитирующий фактор. Большую часть клетки водорослей составляет вода. Цитоплазма в среднем содержит 85—90 % воды, и даже такие богатые липидам и клеточные органеллы, как хлоропласты и митохондрии, содержат не менее 50 % воды. Вода в растительной клетке существует в двух формах: конституционная вода, связанная водородными связями со структурами макромолекул, и резервная вода, не связанная, как правило, содержащаяся в вакуолях. В резервной воде обычно растворены сахара, различные органические кислоты и т. п., вследствие чего она может участвовать в стабилизации внутриклеточного осмотического давления. При полимеризации высокоактивных мелких молекул в макромолекулы (например, при превращении сахаров в крахмал) и при обратном процессе - гидролизе высокомолекулярных соединений, осмотическое давление в клетке способно быстро изменяться. Этот механизм обеспечивает устойчивость отдельных видов водорослей к высыханию и к резким колебаниям солености воды.

Для большинства водорослей вода — постоянная среда обитания, однако многие водоросли могут жить и вне воды. По устойчивости к высыханию, среди обитающих на суше растений выделяют (по Вальтеру) пойкилогидрические, — не способные поддерживать постоянное содержание воды в тканях, и гомойогидршеские — способные поддерживать постоянную гидратацию тканей. У пойкилогидрических растений (синезеленые и некоторые зеленые водоросли) клетки при высыхании сжимаются без необратимого изменения ультраструктуры и, следовательно, не теряют жизнеспособности. При увлажнении они возобновляют нормальный метаболизм. Минимальная влажность, при которой возможна нормальная жизнедеятельность таких растений, различна. Ее значение предопределяет, в частности, распространение аэрофитов. Для гомойогидрических растений обязательно наличие крупной центральной вакуоли, с помощью которой стабилизируется водный запас клетки. Однако клетки с крупными вакуолями в значительной степени утрачивают способность к высыханию. К гомойогидрическим водорослям относятся, например, некоторые аэрофиты из зеленых и желтозеленых " водорослей, обычно поселяющиеся в условиях постоянной избыточной увлажненности.

Соленость и минеральный состав воды. Это важнейшие лимитирующие факторы, влияющие на распределение водорослей. Согласно международной классификации основную массу природных водоемов составляют морские - эвгалинные, со средней соленостью 35 ‰). Среди континентальных водоемов преобладают пресноводные — агалинные, минерализация которых не превышает обычно 0, 5 (среди них встречаются и более минерализованные). Континентальные водоемы, объединяемые под названием минерализованные, очень разнообразны по степени минерализации: это и солоноватые, или миксогалинные, среди которых выделяют олигогалинные (с соленостью 0, 5—5 ‰), мезогалинные (5— 18 ‰) и полигалинные (18—30 ‰), а также эвгалинные (30—40 ‰) и ультрагалинные (не менее 40 ‰)- Среди ультрагалинных нередко выделяют крайне засоленные — гипергалинные водоемы, концентрация солей в которых близка к предельной. Различны континентальные водоемы и по характеру минерализации. Среди них выделяют гидрокарбонатные, сульфатные и хлоридные водоемы, которые в зависимости от степени и характера минерализации подразделяют на группы и типы.

В соответствии с упомянутыми классификациями водоемов и в зависимости от солеустойчивости водорослей, среди них выделяют олигогалинные, мезогалинные, эвгалинные, ультрагалинные, пресноводные и другие виды. Видовое богатство (численность видов) тесно связано с соленостью воды.

Практически в каждом из отделов можно найти виды, способные обитать в условиях крайнего засоления, и виды, живущие в водоемах с очень низкой минерализацией. Так, синезеленые водоросли - в подавляющем большинстве пресноводные организмы, однако среди них есть виды, способные развиваться в ультрагалинных водоемах. Среди типично морских обитателей — золотистых водорослей порядка Кокколитофориды — встречаются виды, распространенные и в континентальных водоемах с крайне низкой минерализацией. Диатомовые водоросли в целом в равной степени распространены и в морских и в континентальных водоемах; они встречаются в условиях с различной соленостью. Однако конкретные виды диатомовых нередко развиваются только при определенной солености и столь чувствительны к ее изменениям, что могут быть использованы как индикаторные организмы.

Очень чувствительны к изменениям солености и бурые водоросли. Многие из них не могут расти даже при незначительном опреснении. Поэтому они бедно представлены в водах Балтийского моря со сравнительно низкой соленостью. Сходную зависимость от степени солености водоема обнаруживают и красные водоросли: в Средиземном море (соленость 37-39 ‰) обнаружено более 300 видов красных водорослей, в Черном (17—18 ‰) - 129, в Каспийском (10 ‰) - 22. Зеленые водоросли преимущественно пресноводные организмы, лишь 10 % из них встречаются в морях. Однако среди них имеются виды, способные выдерживать значительное засоление и даже вызывать «цветение» ультрагалинных водоемов (например, Dunaliella salina).


Поделиться:



Популярное:

Последнее изменение этой страницы: 2017-03-03; Просмотров: 1318; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.061 с.)
Главная | Случайная страница | Обратная связь