Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Видовая специфичность. Авторепродукция
1) Геликаза деспирализует ДНК.
Авторепродукция: Консервативная (половина из старого, половина – из нового), полуконсервативная (половина наполовину из старого и нового и половина из нового), дисперсная (все на четверть из старого). РНК РНК синтезируются на ДНК с помощью ферментов – РНК-полимераз, осуществляющих транскрипцию – переписывание определенных участков (линейных отрезков) двухтяжевой ДНК в форму однотяжевой РНК. Участки ДНК, кодирующие клеточные белки, переписываются в виде м-РНК, тогда как для синтеза многочисленных копий р-РНК и т-РНК имеются специальные участки клеточного генома, с которых идет интенсивное переписывание без последующей трансляции в белки. Химическая структура РНК. Химически РНК очень похожа на ДНК. Оба вещества – это линейные полимеры нуклеотидов. Каждый мономер – нуклеотид – представляет собой фосфорилированный N-гликозид, построенный из остатка пятиуглеродного сахара – пентозы, несущего фосфатную группу на гидроксильной группе пятого углеродного атома (сложноэфирная связь) и азотистое основание при первом углеродном атоме (N-гликозидная связь). Главное химическое различие между ДНК и РНК состоит в том, что сахарный остаток мономера РНК – это рибоза, а мономера ДНК – дезоксирибоза, являющаяся производным рибозы, в котором отсутствует гидроксильная группа при втором углеродном атоме. Урацил характерен для мономеров РНК, а тимин – для мономеров ДНК, и это второе различие РНК и ДНК. Мономеры – рибонуклеотиды РНК или дезоксирибонуклеотиды ДНК – образуют полимерную цепь посредством формирования фосфодиэфирных мостиков между сахарными остатками (между пятым и третьим атомами углерода пентозы). Таким образом, полимерная цепь нуклеиновой кислоты – ДНК или РНК – может быть представлена как линейный сахаро-фосфатный остов с азотистыми основаниями в качестве боковых групп. Макромолекулярная структура РНК. Принципиальное макроструктурное различие двух типов нуклеиновых кислот состоит в том, что ДНК – единая двойная спираль, то есть макромолекула из двух комплементарно связанных полимерных тяжей, спирально закрученных вокруг общей оси), а РНК – однотяжевой полимер. В то же время взаимодействия боковых групп – азотистых оснований – друг с другом, а также с фосфатами и гидроксилами сахаро-фосфатного остова приводят к тому, что однотяжевой полимер РНК сворачивается на себя и скручивается в компактную структуру, подобно сворачиванию полипептидной цепи белка в компактную глобулу. Таким способом уникальные нуклеотидные последовательности РНК могут формировать уникальные пространственные структуры. Помимо того, что молекулы РНК входят в состав некоторых ферментов (например, теломеразы), у отдельных РНК обнаружена собственная ферментативная активность: способность вносить разрывы в другие молекулы РНК или, наоборот, «склеивать» два РНК-фрагмента. Такие РНК называются рибозимами. Минорные (малые) и вирусные РНК. Т-РНК: Первая часть – акцепторный " стебель", образованный 2-мя комплементарно соединёнными концевыми частями. Он состоит из 7 пар оснований. 3'-конец этого стебля несколько длиннее. Он формирует одноцепочечный участок, который заканчивается последовательностью ЦЦА со свободной ОН-группой. К этому концу присоединяется транспортируемая аминокислота. 3 остальные части представляют собой комплементарно спаренные последовательности нуклеотидов, которые заканчиваются неспаренными участками, образующими петли. Средняя часть состоит из 5 пар нуклеотидов и содержит в центре своей петли антикодон. Аминокислота ковалентно присоединяется к 3'-концу молекулы с помощью специфичного для каждого типа т-РНК фермента аминоацил-т-РНК-синтетазы. На участке C находится антикодон, соответствующий аминокислоте. Процессинг т-РНК включает 5 ключевых этапов: 1. удаление 5'-лидерной нуклеотидной последовательности; 2. удаление 3'-концевой последовательности; 3. добавление последовательности CCA на 3'-конец; 4. вырезание интронов (у эукариот и архей); 5. модификации отдельных нуклеотидов; Р-РНК: 5S-РНК – ассоциирована с большой субчастицей, имеет спаренные спиральные участки. 5, 8S-РНК – соединена в рибосоме водородными связями с р-РНК. Р-РНК – лёгкая в малой, тяжёлая – в большой субъединице. У человека гены, кодирующие р-РНК, также организованы в группы тандемных повторов, расположенных в центральных областях короткого плеча 13, 14, 15, 21 и 22-й хромосом. У эукариот места сосредоточения генов, кодирующих р-РНК, обычно хорошо заметны в ядре клетки, благодаря скоплению вокруг них субъединиц рибосом, самосборка которых происходит тут же. Эти скопления хорошо прокрашиваются цитологическими красителями и известны под названием ядрышко. S – коэффициент седиментации (осаждения в единицах Сведберга). И-РНК: Зрелая м-РНК состоит из нескольких участков, различающихся по функциям: «5'-кэп», 5'-нетранслируемая область, кодирующая (транслируемая) область, 3'-нетранслируемая область и 3'-полиадениновый «хвост». 5'-кэп — это модифицированный гуанозиновый нуклеотид, который добавляется на 5'- (передний) конец незрелой м-РНК. Полицистронные м-РНК характерны для прокариот и вирусов, у эукариот большая часть м-РНК является моноцистронной. Полицистронные м-РНК встречаются в митохондриях. Нетранслируемые области называются 5'- и 3'-нетранслируемая область соответственно. Эти области транскрибируются в составе того же самого транскрипта, что и кодирующий участок. Нетранслируемые области имеют несколько функций в жизненном цикле м-РНК, включая регуляцию стабильности м-РНК, локализации м-РНК и эффективности трансляции. Вторичная структура – стебель-петля и псевлоузел. Синтез РНК В ходе синтеза РНК РНК-полимераза движется по матрице в направлении от 3'-конца к 5'-концу значащей цепи ДНК, расплетая двойную спираль. В активном центре фермента осуществляется присоединение нуклеотидов к растущей цепи РНК и удерживается гибридный участок двойной спирали ДНК-РНК длиной примерно 12 нуклеотидных остатков. Позади фермента восстанавливается двойная спираль ДНК и одновременно из каталитического центра фермента высвобождается участок синтезируемой цепи РНК. На скорость движения по ДНК-матрице РНК-полимеразы оказывает влияние степень спирализации ДНК. При увеличении отрицательной сверхспирализации ДНК скорость движения РНК-полимеразы по матрице и, следовательно, скорость синтеза РНК возрастает, так как в этом случае облегчается процесс расплетания ДНК. У бактерий синтез РНК заканчивается при достижении РНК-полимеразой участка ДНК, называемого терминатором. В нём содержится ГЦ-богатая последовательность, вслед за которой в значащей нити ДНК по ходу транскрипции следует последовательность из 4-8 повторяющихся остатков адениловой кислоты (поли-А). Транскрипция прекращается на конце участка поли-А или сразу же за ним. В результате транскрибирования участка ДНК с повторяющимися ГЦ-парами нуклеотидов синтезируется последовательность нуклеотидов РНК, обладающая способностью к формированию двойной спирали в форме «шпильки», которая разрушает большую часть гибридной двойной спирали ДНК-РНК, что ослабляет связь синтезированной цепи РНК с ДНК-матрицей и приводит к высвобождению РНК из ферментного комплекса РНК-полимеразы. После этого происходит отделение от ДНК-матрицы и самого фермента РНК-полимеразы. После соединения с σ -субъединицей ферментная молекула может снова взаимодействовать с промотором и катализировать синтез новой молекулы РНК. Изучение процесса терминации транскрипции генов у высших организмов с участием РНК-полимеразы II показало, что на 3'-концах синтезируемых полинуклеотидных цепей м-РНК имеется специфическая последовательность ААУААА, которая предшествует 3'-концевой последовательности поли-А и во время синтеза является специфическим сигналом к полиаденилированию 3'-конца м-РНК. Синтез РНК является первым этапом реализации в организме генетической информации, который далее инициирует синтез белков и прежде всего белков-ферментов, катализирующих ту или иную жизненно важную биохимическую реакцию. Если в конкретных физиологических условиях потребности в данном ферменте нет, то и нет необходимости организму осуществлять синтез соответствующей м-РНК. Поэтому синтез многих м-РНК в клетках организмов подвержен регуляции, которая осуществляется как на стадии инициации транскрипции, так и в процессе транскрипции. На стадии инициации транскрипции регуляторное воздействие оказывают специфические белки, которые, присоединяясь к определённым участкам ДНК, останавливают или, наоборот, активируют действие фермента РНК-полимеразы. Белки-регуляторы, подавляющие действие РНК-полимеразы, называют репрессорами, а усиливающие действие этого фермента активаторами транскрипции. Участок ДНК, с которым связывается белок-регулятор, у бактерий называют оператором, у высших организмов – регуляторным элементом гена. Способность регуляторных белков связываться с ДНК зависит от низкомолекулярных веществ – эффекторов. Эффекторы, соединяясь с регуляторными белками, вызывают аллостерическое изменение их структуры, вследствие чего изменяется сродство белка-регулятора к регуляторному участку ДНК. Различают два вида белков-репрессоров транскрипции. Одни из них оказывают репрессирующее действие на промоторы в отсутствии эффектора, а при взаимодействии с эффектором теряют сродство к своему регуляторному участку и таким образом инициируют процесс транскрипции. Белки-репрессоры второго типа способны присоединяться к ДНК и ингибировать транскрипцию только в комплексе с эффектором. В отсутствии эффектора белок-репрессор неактивен и в таких условиях РНК-полимераза может взаимодействовать с промотором и осуществлять синтез м-РНК. Наиболее эффективный механизм репрессии транскрипции реализуется в том случае, когда участок связывания белка-репрессора находится на промоторе. Присоединившись к определённому участку промотора, репрессорный белок препятствует присоединению к промотору РНК-полимеразы. Действие белков-активаторов транскрипции очень часто заключается в том, что такой белок присоединяется к регуляторному участку ДНК, непосредственно прилегающему к промотору, и, взаимодействуя с РНК-полимеразой, переводит этот фермент в активное состояние. Ген. Эу- и гетерохроматин Генотип – совокупность всех генов организма. Гаплотип – совокупность всех генов клетки. Геном – совокупность всех генов гаплоидного набора. Мутон. Рекон. Ревертазы удаляют, лигазы сшивают. 1. По месту локализации в клетке – ядерные и цитоплазматические гены. 2. По месту локализации генов в хромосомах – аллельные и неаллельные гены. 3. По функциональному значению различают структурные гены, несут информацию о белках-ферментах и гистонах, о последовательности нуклеотидов в различных видах РНК. Среди функциональных генов выделяют гены-модуляторы, усиливающие или ослабляющие действие структурных генов ( ингибиторы, интеграторы, модификаторы ), и гены, регулирующие работу структурных генов ( регуляторы и операторы ). 4. По влиянию на физиологические процессы в клетке различают летальные, условно летальные, супервитальные, протоонкогены – группа генов, регулирующих нормальное клеточное деление и дифференцировку клеток. Измененные мутацией, но активные формы протоонкогенов носят название онкогенов –способных стимулировать развитие опухолевых клеток, последние могут возникать также в результате снижения активности антионкогенов(продукты этих генов угнетают митотическую активность клеток, участвуют в репарации ДНК и контролируют клеточный цикл). Классификация последовательностей ДНК: Хроматин: Конститутивный гетерохроматин в околоцентромерных и теломерных участках. Поддерживает структуру ядра, прикрепляет его к кариолемме, участвует в узнавании хромосом в мейозе, разделяет соседние структурные гены, регулирует их активность. Факультативный – тельце полового хроматина. Группа А – барабанные палочки (в лейкоцитах); группа В – непостоянство формы отростков, несколько в лейкоците, чаще у мужчин; группа С – псевдобарабанные палочки, неравномерно окрашиваются, складчатые, на толстой ножке, чаще у мужчин. Плазмалемма, цитоплазма Плазмалемма: Состоит из мембраны, над- и субмембранного комплексов. Субмембранный комплекс локализуется под мембраной, он состоит из фибриллярных белков, образующих цитоскелет. Мембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим — более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются. Рядом с белками находятся аннулярные липиды — они более упорядочены, менее подвижны, имеют в составе более насыщенные жирные кислоты и выделяются из мембраны вместе с белком. Без аннулярных липидов белки мембраны не работают. Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, в наружном содержатся преимущественно фосфатидилинозитол, фосфатидилхолин, сфингомиелины и гликолипиды, во внутреннем — фосфатидилсерин, фосфатидилэтаноламин и фосфатидилинозитол. Переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп) затруднён, но может происходить с помощью белков-флиппаз и скрамблазы плазматической мембраны. Если в наружном слое появляется фосфатидилсерин, это является сигналом для макрофагов о необходимости уничтожения клетки. У архей мембраны образованы глицерином и терпеноидными спиртами. Свойства: текучесть, динамичность, избирательная проницаемость. Функции: ü барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами; ü транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов; ü матричная — обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие; ü механическая — обеспечивает автономность клетки, её внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечении механической функции имеют клеточные стенки, а у животных — межклеточное вещество; ü энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки; ü рецепторная — некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы); ü ферментативная — мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты; ü осуществление генерации и проведения биопотенциалов; ü маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». ПАК: У растений: ПМ – 2 слоя белков и 1 слой фосфолипидов 2 раза; + НК (клетчатка, суберин, лигнин, гемицеллюлоза, белки, пектины, воск, кутин); У животных: НК – гликокаликс – и ПМ: белки, полисахариды; У грибов: НК – муреин – и ПМ; У прокариот: НК – слизевый чехол и пептидогликан (муреин, аминокислоты, ацетилмурамовая кислота, ацетилглюкозамин, белки, липопротеины); Цитоплазма: Гиалоплазма + включения + органеллы Гиалоплазма = золь + гель + цитоскелет (микротрубочки, микрофиламенты, микротрабекулы) Функции: внутренняя среда для хим. реакций; объединяет все структуры клетки; определяет местоположение органоидов; обеспечивает внутренний транспорт; форма клетки; вместилище АТФ; Цитоскелет: Микрофиламенты – много в поверхностном слое цитоплазмы, в ложноножках, пучки содержатся в микроворсинках эпителия кишечника; взаимодействует с микротрубочками, ПМ и обеспечивает движение гиалоплазмы, участвует в эндоцитозе, образует перетяжку. Микротрубочки – опора, придаёт форму, образует веретено деления, обеспечивает расхождение хроматид (хромосомные прикрепляются к хромосомам и скользят по полюсным), перемещает органеллы. Растворяется колхицином. Органоиды. Включения Органеллы: Общего назначения: ЭПС, рибосомы, комплекс Гольджи, лизосомы, митохондрии, пластиды, центросома, микротельца. Специального назначения: мио-, нейро-, тонофибриллы, реснички, жгутики. Двумембранные: митохондрии и пластиды. Одномембранные: ЭПС, комплекс Гольджи, лизосомы, вакуоли, микротельца (пероксисомы). Немембранные: клеточный центр и рибосомы. Митохондрии: Функции: регуляция обмена воды, депонирование ионов кальция, продукция предшественников стероидных гормонов. В кардиомиоцитах митохондрии находятся вблизи миофибрилл, в клетках почечных канальцев вблизи базальных впячиваний. Наружная мембрана взаимодействует с мембраной ЭПС, содержит порины. Характерной чертой состава внутренней мембраны митохондрий является присутствие в ней кардиолипина — особого фосфолипида, содержащего сразу четыре жирные кислоты и делающего мембрану абсолютно непроницаемой для протонов. Ещё одна особенность внутренней мембраны митохондрий — очень высокое содержание белков, представленных транспортными белками, ферментами дыхательной цепи, а также крупными АТФ-синтетазными комплексами. Внутренняя мембрана митохондрии в отличие от внешней не имеет специальных отверстий для транспорта мелких молекул и ионов; на ней, на стороне, обращенной к матриксу, располагаются особые молекулы АТФ-синтазы, состоящие из головки, ножки и основания. При прохождении через них протонов происходит синтез АТФ. В основании частиц, заполняя собой всю толщу мембраны, располагаются компоненты дыхательной цепи. Наружная и внутренняя мембраны в некоторых местах соприкасаются, там находится специальный белок-рецептор, способствующий транспорту митохондриальных белков, закодированных в ядре, в матрикс митохондрии. Впячивания – кристы и тубулы. Находящаяся в матриксе митохондриальная ДНК представляет собой замкнутую кольцевую двуспиральную молекулу. Все белки, кроме одного, две рибосомные и шесть транспортных РНК транскрибируются с более тяжёлой (наружной) цепи ДНК, а 14 других тРНК и один белок транскрибируются с более лёгкой (внутренней) цепи. Рибосомы 55S, малая субъединица отсутствует. Лизосомы: Оболочка покрыта волокнистым белковым слоем. Первичные, вторичные (фагосомы) и третичные (остаточные тельца). Гетеро- (фаго-) и ауто- (цито-) лизосомы. В мембране есть протонный насос и интегральные белки. Лизосомы формируются из пузырьков (везикул), отделяющихся от аппарата Гольджи, и пузырьков (эндосом), в которые попадают вещества при эндоцитозе. В образовании аутолизосом (аутофагосом) принимают участие мембраны эндоплазматического ретикулума. Все белки лизосом синтезируются на «сидячих» рибосомах на внешней стороне мембран эндоплазматического ретикулума и затем проходят через его полость и через аппарат Гольджи. Болезнь Тея-Сакса, Гоше. ЭПС: Мембрана ЭПР морфологически идентична оболочке клеточного ядра и составляет с ней одно целое. Таким образом, полости эндоплазматического ретикулума открываются в межмембранную полость ядерной оболочки. Содержит ненасыщенные фосфолипиды, холестерин и сфинголипиды. В их состав также входят белки – ретикулоны. Трубочки заполнены гомогенным содержимым, осуществляют коммуникацию между содержимым пузырьков ЭПС, внешней средой и ядром клетки. Функции: Содержит запас кальция. Синтез половых и стероидных гормонов. Углеводный обмен, нейтрализация ядов. Синтез провакуолей. Транслакон транспортирует белки в ЭПС. Рибосомы: Полисомы. На полисомах гиалоплазмы образуются белки, используемые клеткой, а на ЭПС – на экспорт. Синтез в ядрышке. Комплекс Гольджи: Состоит из диктиосом. Функции: a) Разделение белков на 3 потока: · Лизосомальный — гликозилированные белки (с маннозой) поступают в цис-отдел комплекса Гольджи, некоторые из них фосфорилируются, образуется маркер лизосомальных ферментов — манноза-6-фосфат. В дальнейшем эти фосфорилированные белки не будут подвергаться модификации, а попадут в лизосомы. · Конститутивный экзоцитоз (конститутивная секреция). В этот поток включаются белки и липиды, которые становятся компонентами поверхностного аппарата клетки, в том числе гликокаликса, или же внеклеточного матрикса. · Индуцируемая секреция — сюда попадают белки, которые функционируют за пределами клетки. Характерен для секреторных клеток. b) Формирование слизистых секретов. c) Формирование углеводных компонентов гликокаликса. d) Сульфатирование углеводных и белковых компонентов гликопротеидов и гликолипидов. e) Частичный протеолиз белков — иногда за счет этого неактивный белок переходит в активный (проинсулин превращается в инсулин). f) Концентрирует, обезвоживает и уплотняет продукты на выделение. g) Синтез гликолипидов, гликопротеинов, полисахаридов, зёрен желтка в ооцитах, гетеро- и аутолизосом. Пластиды: Пластиды имеют от двух до четырёх мембран, собственный геном и белоксинтезирующий аппарат. Внутренняя и внешняя мембраны пластид бедны фосфолипидами и обогащены галактолипидами. Внешняя мембрана не имеет складок, никогда не сливается с внутренней мембраной и содержит поровый белок, обеспечивающий свободный транспорт воды, ионов и метаболитов с массой до 10 кДа. Внешняя мембрана имеет зоны тесного контакта с внутренней мембраной; предполагается, что в этих участках осуществляется транспорт белков из цитоплазмы в начале пластид. Внутренняя мембрана проницаема для небольших незаряженных молекул и для недиссоциированных низкомолекулярных монокарбоновых кислот, для более крупных и заряженных метаболитов в мембране локализованы белковые переносчики. Строма — внутреннее содержимое пластид — представляет собой гидрофильный матрикс, содержащий неорганические ионы, водорастворимые органические метаболиты, геном пластид (несколько копий кольцевой ДНК), рибосомы прокариотического типа, ферменты матричного синтеза и другие ферментативные системы. Эндомембранная система пластид развивается в результате отшнуровки везикул от внутренней мембраны и их упорядочивания. Степень развития эндомембранной системы зависит от типа пластид. Наибольшего развития эндомембранная система достигает в хлоропластах, где она является местом протекания световых реакций фотосинтеза и представлена свободными тилакоидами стромы и тилакоидами, собранными в стопки — граны. Внутреннее пространство эндомембран называется люмен. Люмен тилакоидов, так же, как и строма, содержит ряд водорастворимых белков. Деление пластид начинается с сжатия в центре, которое углубляясь образует перетяжку между двумя дочерними пластидами, после чего происходит полное разделение. На стадии перетяжки на внешней мембране образуется кольцо из белка, близкого к сократительному белку бактерий. У некоторых растений (герань, свинчатка, ослинник) было обнаружено двуродительское наследование пластид. Для некоторых голосеменных растений (гинкго, саговники) характерно наследование пластид по отцовской линии. Функции: · фотосинтез; · восстановление неорганических ионов (нитрита, сульфата); · синтез многих ключевых метаболитов (порфирины, пурины, пиримидины, многие аминокислоты, жирные кислоты, изопреноиды, фенольные соединения), при этом некоторые синтетические пути дублируют уже существующие пути цитозоля; · синтез регуляторных молекул (гиббереллины, цитокинины, АБК); · запасание железа, липидов, крахмала; Типы: Пропластиды — предшественники остальных типов пластид, присутствуют в меристематических клетках. Внутренняя мембранная система развита слабо, содержат меньше рибосом, чем дифференцированные пластиды, могут содержать отложения белка фитоферритина, основная функция которого – хранение ионов железа. Лейкопласты — неокрашенные пластиды, участвующие в синтезе изопреноидов эфирных масел. Характерной особенностью лейкопластов является наличие ретикулярного футляра — сети мембран гладкого ЭПС, окружающей пластиду. Иногда под термином «лейкопласты» понимают любые неокрашенные пластиды, при этом выделяют следующие типы: амилопласты, элайопласты, протеинопласты. Амилопласты — внешне похожи на пропластиды, но в строме содержатся гранулы крахмала. Амилопласты, как правило, присутствуют в запасающих органах растений, в частности в клубнях картофеля. В грависенсорных клетках корня амилопласты играют роль статолитов. Амилопласты высших растений могут превращаться в хлоропласты или хромопласты. Элайопласты — служат для запасания жиров. Протеинопласты — служат для запасания белков. Этиопласты, или темновые пластиды, развиваются из пропластид в темноте, при освещении они превращаются в хлоропласты. Липиды внутренних мембран стромы хранятся в форме рельефной мембранной структуры, называемой проламеллярным телом. Известно, что свет инициирует синтез белков тилакоидных мембран и хлорофилла из накопленного протохлорофиллида. Хлоропласты — зелёные пластиды, основной функцией которых является фотосинтез. Хлоропласты имеют хорошо развитую эндомембранную систему, в которой выделяют тилакоиды стромы и стопки тилакоидов — граны. Зелёная окраска хлоропластов обусловлена высоким содержанием основного пигмента фотосинтеза — хлорофилла –, а также фикобилинов. Хромопласты — пластиды, окрашенные в жёлтый, красный или оранжевый цвет. Хромопласты могут развиваться из пропластид или повторно дифференцироваться из хлоропластов; также хромопласты могут редифференцироваться в хлоропласты. Окраска хромопластов связана с накоплением в них ксантофиллов, каротиноидов, фикоэритринов. Синтезируют витамины. Хлорофиллы поглощают синий и красный свет, каротиноиды – синий и сине-зелёной. Зелёный и жёлтый не поглощают. Амилопласты в пропластиды, лейкопласты, хромопласты; пропластиды в этиопласты, хлоропласты, лейкопласты, амилопласты; хлоропласты в хромопласты, амилопласты, этиопласты; лейкопласты в хлоропласты, хромопласты; этиопласты в хлоропласты; Клеточный центр: Их нет у высших растений, у низших грибов и некоторых простейших, у плоски червей. Увеличение числа центросом характерно для онкологий. Микротрубочки, растущие из дочерних центросом, крепятся другим концом к так называемым кинетохорам на центромерах хромосом. Центриоли и лучистая сфера. Базальные тельца лежат в основании ресничек и жгутиков, являются опорой, 9*2. Микротельца: пероксисомы. В центре матрикса пероксисом с помощью электронного микроскопа найдена плотная сердцевина (кристаллоид), которая содержит волокнистые и трубчатые макромолекулярные образования. Глиоксисомы образуются в комплексе Гольджи, их ферменты превращают жиры в углеводы. Включения: трофические, секреторные, экскреторные, пигментные. Ядро Хроматин, ядрышко, кариолемма, кариоплазма, ядерный матрикс (спорно) из негистоновых белков. Популярное: |
Последнее изменение этой страницы: 2017-03-08; Просмотров: 1065; Нарушение авторского права страницы