Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Диаграмма состояния «Железо - Углерод»



 


 

Представляет собой графическое изображение состояния сплава. Координатором является температура концентрации. Диаграмма состояния строится для равновесных условий, она позволяет определить фазовое состояние для заданных условий. Фазой называется однородная часть системы, отделенная от других частей системы границей раздела при переходе через которую свойства меняются скачкообразно.

Железо в твердом состоянии может иметь две кристаллические модификации:

• До 911 °C - ОЦК (альфа - железо)

• Св. 911 °C железо претерпевает полиморфное превращение, приобретая решетку ГЦК (гамма - железо), и сохраняет это состояние до 1392 °C.

• При температуре 1392 °C происходит полиморфное превращение с образованием ОЦК (дельта - железо)

• При нагреве до температуры 1539 °C - образуется жидкая фаза.

Растворимость углерода в железе зависит от типа кристаллической решетки и температуры. В альфа - железе при 20 °C растворяется 0, 01 % углерода, при 727 °C -0, 02 %. В гамма - железе при температуре 1147 °C растворяется до 2, 14% углерода.

Стали подразделяют на доэвтектоидные и заэвтектоидные. В зависимости от содержания углерода стали подразделяют на: низкоуглеродистые (с содержанием углерода до 0, 25 % включительно); среднеуглеродистые (от 0, 25 % до 0, 45 % углерода); высокоуглеродистые (более 0, 45 %). В группе высокоуглеродистых сталей выделяют инструментальные стали (С=0, 7 - 1, 3 %) У7, У8, У13.

С увеличением концентрации С, возрастает прочность и твердость стали, со снижением пластичности.

В т. А2 при температуре 768 исчезают магнитные свойства железа.

Углеродистые стали.

В сплавах Fe-С углерод является легирующим элементом, кроме того содержатся раскислители: марганец (Mn) до 0, 2 %, и кремний (Si) до 0, 4 %.

Углеродистые стали различают по качеству:

обозначение качество Содержание серы Содержание Фосфора
ВCm 3; Cm 3 Стали обыкновенного качества До 0, 05 % До 0, 04 %
Ст10; Ст20 Качественные стали До 0, 04 % До 0, 035 %
Ст10А; Ст20А Высококачественные стали До 0, 025 % До 0, 025 %
Ст10АА Особо высококачественные стали До 0, 015 % До 0, 02 %

 

Сварочную проволоку различают по качеству:

• Обыкновенного качества не делают.

• Св-08 - качественная

• Св-08А - высококачественная

• Св-08АА - особо высококачественная

 

Стали обыкновенного качества разделяют по группам:

А Б В
Нормируются только по механическим свойствам (хим. состав не нормируется) Ст2; Ст3 Нормируются только по хим. составу (механические свойства не нормируются) БСт2; БСт3 Нормируются по механическим свойствам и по химическому составу ВСт2; В Ст3

 

 

По степени раскисленности все углеродистые стали разделяют:

  КП Кипящие   ПС полуспокойные   СП спокойные
  марганец   марганец + алюминий   марганец + алюминий + кремний

 

Кипящие стали склонны к образованию горячих, трещин, их не используют при отрицательных температурах.

У спокойных сталей плотный шов с хорошими характеристиками.

Низкоуглеродистые стали обладают высокими сварочно - технологическими свойствами, мало склонны к образованию горячих и холодных трещин, не требуют предварительного подогрева при толщине свариваемых деталей до 30 - 36 мм и последующей термообработки.

Термообработка сварных конструкций.

Термообработка рекомендуется для изделий, работающих в условиях отрицательных температур (условий крайнего севера), остаточные напряжения снижаются до предела текучести.

Термообработка назначается с целью повышения эксплуатационной надежности сварных конструкций, что достигается за счет:

1. Уменьшения или устранения хрупких и малопластичных структур.

2. Устранение или уменьшение химической и физической неоднородности.

3. Устранение или уменьшение остаточных сварочных напряжений (иногда и деформаций).

4. Улучшение структуры и свойств сварных соединений и материала изделия в целом.

Термообработка ставит целью изменение в структуре свойств в заданном направлении за счет нагрева до определенных температур и различных условий охлаждения. Режим любой термообработки можно представить в виде графика:

 

 

Наиболее важное значение имеет время выдержки и скорость охлаждения. В зависимости от этих параметров различают несколько видов термообработки:

- Отжиг;

- Закалка (нормализация)

- Отпуск (старение)

Отжиг делится на: отжиг 1-го рода (ниже А1); и отжиг 2-го рода (выше A3).

Отжиг предусматривает нагрев выше температуры фазового превращения (выше A3) с последующим охлаждением вместе с печью. Отжиг позволяет получить наибольшее значение пластичности сталей (прочностные характеристики - снижаются).

Закалка предусматривает нагрев выше A3 с последующим принудительным охлаждением (с высокой скоростью охлаждения), если охлаждение происходит на открытом воздухе (или воздухе помещения = 20 градусов), то такой процесс называется нормализация. Закалка обеспечивает получение неустойчивого структурного состояния стали в сплавах с повышенной прочностью и малой пластичностью (вплоть до получения мартенсита).

Отпуск предусматривает нагрев закаленной стали до температуры ниже Al с целью получения структурно - устойчивого состояния, с последующим охлаждением на воздухе.

Всего различают 3 вида отпуска в зависимости от температуры нагрева:

1. Высокий отпуск: 600 - 650 градусов (используется для сварных конструкций).

2. Средний отпуск: 450 градусов.

3. Низкий отпуск: 250 градусов (самая большая остаточная прочность).

 

Строение сварного соединения.

 

Структура и свойства сварного соединения всегда отличаются от структуры и свойств основного материала, что объясняется воздействием температур на основной материал. Сварное соединение включает в себя: (см. рис.)

1. Металл шва;

2. Зону сплавления;

3. Зону термического влияния (ЗТВ);

4. Основной металл.

Металл шва имеет дендроидное (древовидное) строение.

Зона сплавления представляет собой участок в котором металл нагревался в интервале: Тл-Тс

(по диаграмме состояния).

Строение ЗТВ определяется составом материала и характером термического воздействия на основной металл. Наиболее значительные изменения в ЗТВ происходят в металлах склонных к полиморфным превращениям (ОЦК - ГЦК), в таких металлах различают несколько характерных участков:

Участок перегрева характеризуется крупным зерном и пониженной пластичностью.

Зону сплавления и участок перегрева принято называть околошовной зоной, она характеризуется наиболее низкими механическими свойствами (низкой пластичностью) и высокой твердостью.

 

Участок перекристаллизации - нагрев от A3 до 1100 градусов.

Участок частичной (неполной) перекристаллизации.

Участок высокого отпуска.

Участок синеломкости:

Средний отпуск (400 - 450 градусов);

Низкий отпуск (250 градусов).

Далее структурный состав основного металла не претерпевает значительных изменений.

 

Особенности сварки легированных сталей.

Низколегированные стали обладают достаточно высокой стойкостью к образованию горячих трещин, однако у них проявляется склонность к образованию холодных трещин. Вероятность их появления возрастает с увеличением степени легирования низколегированных сталей, что предусматривает необходимость предварительного и сопутствующего подогрева при сварке.

 

Понятие о свариваемости.

 

К любым материалам рекомендуемым для изготовления сварных конструкций предъявляются требования свариваемости. Под свариваемостью понимают: технологическое свойство металлов (или их сочетаний) образовывать в процессе сварки соединения отвечающие конструктивным и эксплуатационным требованиям к ним. Свариваемость бывает:

- Хорошая, (без подогрева и термообработки).

- Удовлетворительная, (с подогревом).

- Ограниченная, (требуется подогрев + термообработка после сварки).

- Неудовлетворительная.

Кроме того, свариваемость разделяют на:

Металлургическую (влияние химического состава металла на характер химического взаимодействия элементов в металле шва и околошовной зоне).

Тепловую (влияние на свариваемость металла - термодеформационного цикла сварки).

Конструктивную (в зависимости от взаимного расположения свариваемых деталей возникновение дефектов).

Технологическую (способность металла сварного соединения выдерживать различного рода повреждения (разрушения) весь технологический процесс сварки).

Принципиальную (способность к получению принципиальных (атомных) связей).

Достаточную (относительно основного металла).

Недостаточную (относительно основного металла).

В связи с тем, что свариваемость определяется совокупностью свойств единой методики, однозначно определяющих свариваемость - не существует. Для оценки свариваемости проводят ряд испытаний, каждое из которых характеризует те или иные свойства.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2017-03-03; Просмотров: 1319; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.031 с.)
Главная | Случайная страница | Обратная связь