Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ТЕПЛОВЫЕ ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ



 

2.1 Теоретические основы преобразования энергии в тепловых двигателях

 

Современная наука и техника основываются на фундаментальных законах сохранения материи и энергии. Понимание этих законов необходимо для решения актуальных задач повышения эффективности преобразования и потребления энергии, разработки новых способов получения электроэнергии и т. д.

Закон сохранения материи.Трудно назвать эпоху, в которую этот закон был открыт. Первые представления о сохранении материи складывались задолго до нашей эры в древней индийской философии, откуда они, видимо, проникли в Древнюю Грецию. Еще за 450 лет до н. э. древнегреческий философ Эмпедокл утверждал, что ничто не возникает из ничего и ничто не может быть уничтожено. Идея о сохраняемости вещества была развита в Древней Греции в связи с учением об атомном строении материи.

Многие выдающиеся ученые, мыслители древности и более позднего времени — средневековья и эпохи Возрождения — в различной форме высказывали идеи о сохранении материи. Были даже попытки опытным путем доказать справедливость закона сохранения массы.

Экспериментальное подтверждение закона сохранения массы получало тем большую доказательную силу, чем выше достигалась точность определения масс.

Закон сохранения энергии. Закон сохранения энергии открыт в середине XIX в. О значении законов сохранения материи и энергии физик Планк во введении к своей книге «Принцип сохранения энергии» писал, что имеются два закона, которые служат фундаментом для современ ного здания точных естественных наук: принцип сохранения материи и принцип сохранения энергии.

Закон сохранения энергии в учении о тепловых превращениях получил название первого принципа термодинамики. Рассмотрим действие его на примере некоторой системы С, совершающей механическую работу за счет теплоты. Пусть температура системы С во всех точках одинакова. При подведении теплоты к системе ее энергия увеличивается. Если воздействие на систему сводится только к подведению теплоты, то увеличение энергии системы происходит на величину AU=Q. Система может совершить работу за счет уменьшения своей энергии и понижения температуры. Если одновременно происходит подведение к системе теплоты и совершение системой работы А, то изменение энергии системы происходит на величину AU'=QА. Если энергия системы не изменяется, то A = Q.

Это уравнение в количественной форме выражает первый принцип термодинамики, состоящий в том, что для получения работы без изменения энергии к системе необходимо подводить теплоту. Поэтому невозможно создать двигатель, который мог бы совершать работу, не получая теплоты, т. е. невозможно создать вечный двигатель первого рода.

Можно, не нарушая первого принципа термодинамики, умозрительно представить работу двигателя, в котором теплота передается от менее нагретого тела к более нагретому, и при этом работа не совершается. Такие двигатели получили название вечных двигателей второго рода. Многовековой опыт человечества показал, что создание вечных двигателей второго рода, так же как и вечных двигателей первого рода, невозможно.

В термодинамике рассматриваются равновесные состояния тел, температура которых в занимаемом объеме, а также давление, приложенное ко всей поверхности тела, одинаковы.

На современных мощных ТЭС превращение теплоты в работу происходит в циклах, где в качестве рабочего тела используется водяной пар.

Термодинамический цикл преобразования теплоты в работу с помощью водяного пара был предложен в середине XIX в. шотландским инж. У. Ренкиным. Принципиальная технологическая схема ТЭС, работающей по циклу Ренкина (рис. 2.1), состоит из парогенератора 1, турбины 2, электрического генератора 3, конденсатора 4и насоса 5.В парогенераторе происходит сжигание топлива, за счет получаемой теплоты вода нагревается и испаряется. Этому процессу на диаграмме цикла Ренкина соответствует участок АВ увеличения объема при постоянном давлении. Пар, получаемый в парогенераторе, направляется в турбину, где происходит его расширение и превращение внутренней энергии пара в механическую, т. е. в турбине совершается полезная работа.

 

Рис. 2.1 - Технологическая схема тепловой электростанции, работающей по циклу Ренкина

 

1 — парогенератор; 2 турбина; 3 — электрический генератор; 4— конденсатор; 5 — насос; Линии ВС —пар; CDAконденсат.

 

Процесс расширения пара в турбине в идеальном цикле Ренкина (рис. 2.2) происходит по адиабате ВС. Далее отработанный в турбине пар конденсируется и из конденсатора охлаждающей водой отводится теплота. Конденсации пара соответствует участок CD. Конденсат питательным насосом подается в парогенератор, что сопровождается возрастанием давления воды при постоянном объеме, так как вода несжимаема. Этому процессу соответствует участок DA.

 

 

Рис. 2.2 - Схема идеального цикла Ренкина паросиловой установки

 

АВподвод теплоты рабочему телу в парогенераторе, ВС— преобразование энергии пара в механическую энергию в турбине; CD— охлаждение пара в конденсаторе; DAподача насосом конденсата в парогенератор.

 

КПД идеального цикла Ренкина, как и любой тепловой машины, характеризуется отношением теплоты, затраченной на работу, ко всей полученной от нагревателя теплоте: где Q1 — количество теплоты, подведенное к рабочему телу в парогенераторе; Q2 — количество теплоты, отведенного охлаждающей водой в конденсаторе.

Эксергия.При анализе свойств тепловых машин обычно составляют энергетический баланс, иногда называемый тепловым балансом. Например, при рассмотрении тепловых станций приводится баланс теплоты, в котором, как правило, за 100% принимается теплота, получаемая при сжигании органического топлива, и далее указываются составляющие расхода этой теплоты на выработку электроэнергии, потери в различных элементах: паропроводах, конденсаторах, турбинах и т. д. При этом необходимо учитывать качество теплоты, характеризуемое эксергией — максимальной способностью материи к совершению работы в таком процессе, конечное состояние которого определяется условиями термодинамического равновесия с окружающей средой.

Количественно эксергия определяется отношением

(2.1)

где —температура теплоносителя, К; —температура окружающей среды, К.

Работа А, кГм, которую можно получить за счет некоторого количества теплоты Q, связана с эксергией выражением

(2.2)

Следовательно, качество теплоты, определяемое ее работоспособностью, отражается эксергией. Уменьшение потерь теплоты наиболее эффективно там, где эксергия больше. Очевидно, что чем ближе температура рабочего тела к температуре окружающей среды, тем практическая пригодность тепловой энергии ниже. В конденсаторах ТЭС температура рабочего тела близка к температуре окружающей среды, поэтому возникающие в них большие потери энергии отражают потери в других звеньях цепочки преобразований энергии и указывают на несовершенство тепловых процессов.

Качество энергии в конденсаторах низкое, его снижение происходит на предшествующих этапах преобразования энергии. Таким образом, тепловой баланс не позволяет выявить элементы тепловой установки, в которых протекают процессы, снижающие качество энергии.

Окружающая среда содержит, по существу, неограниченное количество теплоты, однако ее качество, определяемое практической пригодностью, в соответствии со вторым законом термодинамики равно нулю. Для оценки практической пригодности энергии, содержащейся в материи, важно знать не только количество эксергии, но и ее концентрацию, т. е. отношение эксергии к объему термодинамического агента. Чем выше концентрация эксергии, тем лучше показатели сооружения и эксплуатации энергетических установок.

КПД преобразователей энергии, определенные по использованию вещества.Оценка запасов энергоресурсов и показателей их добычи определяется эффективностью их полезного употребления. Усовершенствование технических установок, позволяющее более полно (т. е. с большим КПД) использовать первичные энергоресурсы, означает, что для получения одного и того же количества энергии требуется меньшее количество первичных ресурсов. Определяя КПД, вспомним, что согласно теории относительности, созданной А. Эйнштейном, масса тела зависит от скорости движения его:

(2.3)

где т0 — масса покоя, т. е. масса тела при скорости, равной нулю (и = 0); с=3-1010 см/с — скорость света.

Если скорость движения тела равна нулю, то т = т0. При увеличении скорости масса тела увеличивается, и в пределе, когда тело движется со скоростью света (у/с=1), его масса равна бесконечности. При этом никакие конечные силы не в состоянии изменить траекторию движения тела.

А. Эйнштейн показал, что полная энергия тела и его масса связаны соотношением, имеющим универсальное значение:

(2.4)

В соответствии с этим соотношением энергия, отвечающая массе в 1 кг, равна 25 ТВ-ч, что значительно превышает полную потребность в электрической энергии всего населения мира в течение суток.

В результате аннигиляции, происходящей при столкновении электрона с позитроном, происходит уничтожение этих частиц и порождение двух -квантов с энергией 0, 51 МэВ каждый, что в точности равно энергии покоя электрона и позитрона —

Если использование первичных ресурсов оценить несколько необычно, а именно учитывая их энергию, содержащуюся в массе вещества, согласно приведенному соотношению, то придется констатировать, что преоб разование этих первичных ресурсов в электроэнергию на станциях различных типов происходит с низким КПД. При этом наибольший КПД соответствует АЭС, а наименьший — ГЭС. Значения расхода энергоносителей и КПД, определены для электростанций одинаковой мощности (1 ГВт), вырабатывающих за сутки 24 ГВт-ч (86, 4-1012 Дж) энергии.

 

2.2 Схема преобразования энергии на ТЭС

 

На современных мощных ТЭС устанавливают паровые турбины. Первая паровая турбина, предназначенная для вращения электрического трехфазного генератора, была установлена на Эльберфельдской электростанции в 1899 г. С тех пор началось развитие мощных паротурбинных электростанций. Схема преобразования энергии на тепловых станциях показана на рис. 2.3.

В качестве тепловых двигателей на электрических станциях используют также газовые турбины.

Для повышения эффективности работы тепловых двигателей стремятся максимально увеличить температуру рабочего тела и его давление до значе­ний, приемлемых по условиям механической прочности конструкционных материалов.

Рассмотрим типичную конденсационную ТЭС, работающую на орга­ническом топливе. Схема этого предприятия показана на рис. 2.4. Основным «сырьем» для работы ТЭС является органическое топливо, содержащее запас химической энергии, измеряемый теплотой сгорания Qсг.

Топливо подается в котел и для его сжигания сюда же подается окис­литель — воздух, содержащий кислород. Воздух берется из атмосферы. В за­висимости от состава и теплоты сгорания для полного сжигания 1 кг топлива

Рис. 2.3 - Схема преобразования энергии на тепловых станциях

 

требуется 10—15 кг воздуха и, таким образом, воздух — это тоже природное «сырье» для производства электроэнергии, для доставки которого в зону горения необходимо иметь мощные высокопроизводительные нагнетатели. В результате химической реакции сгорания, при которой углерод С топлива превращается в оксиды СО2 и СО, водород Н2 — в пары воды Н2О, сера S — в оксиды SO2 и SO3 и т.д., образуются продукты сгорания топлива — смесь различных газов высокой температуры. Именно тепловая энергия продуктов сгорания топлива является источником электроэнергии, вырабатываемой ТЭС.

 

Рис. 2.4 - Схема технологического процесса тепловой конденсационной электростанции

 

Далее внутри котла осуществляется передача тепла от дымовых газов к воде, движущейся внутри труб. К сожалению, не всю тепловую энергию, высвободившуюся в результате сгорания топлива, по техническим и экономическим причинам удается передать воде. Охлажденные до температуры 130—160 С продукты сгорания топлива (дымовые газы) через дымовую трубу покидают ТЭС. Часть теплоты, уносимой дымовыми газами, в зависимости от вида используемого топлива, режима работы и качества эксплуатации, составляет 5—15 %.

Часть тепловой энергии, оставшаяся внутри котла и переданная воде, обеспечивает образование пара высоких начальных параметров. Этот пар направляется в паровую турбину. На выходе из турбины с помощью аппарата, который называется конденсатором, поддерживается глубокий вакуум: давление за паровой турбиной составляет 3—8 кПа (напомним, что атмосферное давление находится на уровне 100 кПа). Поэтому пар, поступив в турбину с высоким давлением, движется к конденсатору, где давление мало, и расширяется. Именно расширение пара и обеспечивает превращение его потенциальной энергии в механическую работу. Паровая турбина устроена так, что энергия расширения пара преобразуется в ней во вращение ее ротора. Ротор турбины связан с ротором электрогенератора, в обмотках статора которого генерируется электрическая энергия, представляющая собой конечный полезный продукт (товар) функционирования ТЭС.

Для работы конденсатора, который не только обеспечивает низкое давление за турбиной, но и заставляет пар конденсироваться (превращаться в воду), требуется большое количество холодной воды. Это — третий вид «сырья», поставляемый на ТЭС, и для функционирования ТЭС он не менее важен, чем топливо. Поэтому ТЭС строят либо вблизи имеющихся природных источников воды (река, море), либо строят искусственные источники (пруд-охладитель, воздушные башенные охладители и др.).

Основная потеря тепла на ТЭС возникает из-за передачи теплоты конденсации охлаждающей воде, которая затем отдает ее окружающей среде. С теплом охлаждающей воды теряется более 50 % тепла, поступающего на ТЭС с топливом. Кроме того, в результате происходит тепловое загрязнение окружающей среды.

Часть тепловой энергии топлива потребляется внутри ТЭС либо в виде тепла (например, на разогрев мазута, поступающего на ТЭЦ в густом виде в железнодорожных цистернах), либо в виде электроэнергии (например, на привод электродвигателей насосов различного назначения). Эту часть потерь называют собственными нуждами.

Отношение количества энергии, отпущенной ТЭС за некоторый промежуток времени, к затраченной за это время теплоте, содержащейся в сожженном топливе, называется коэффициентом полезного действия нетто ТЭС по выработке электроэнергии. Для ТЭС он составляет 40 %.

Понятие КПД нетто ТЭС обычно используется как универсальная оценка для сравнения ТЭС в различных странах, при научном анализе и в некоторых других случаях. В повседневной практике на ТЭС используют другой показатель — удельный расход условного топлива bу, измеряемый в г/(кВт•ч). Напомнить (см. предыдущую лекцию), что условное топливо — это топливо, имеющее теплоту сгорания Qсг = 7000 ккал/кг = 29, 33 МДж/кг. Если, например, на ТЭС сожгли 100 т угля с теплотой сгорания Qсг = 3500 ккал/кг, т.е. использовали Ву = 50 т у.т., и при этом отпущено в сеть Э = 160 000 кВт•ч электроэнергии, то удельный расход условного топлива составит 312, 5 г/(кВт•ч).

Полезно и легко запомнить, что удельному расходу bу = 333 г/(кВт·ч) соответствует КПД нетто hТЭС »37 %. Примерно такой уровень имеет типичная ТЭС России.

Повышение КПД нетто ТЭС на 1 % означает уменьшение удельного расхода условного топлива на на Dbу = 0, 01 · 341, 7 = 3, 4 г/(кВт·ч), что дает экономию условного топлива в масштабах России DВТ = 0, 52 · 3, 4 = 1, 8 млн.т. у.т.

Тепловая электростанция пропускает через себя огромное количество воды. Можно считать, что для отпуска 1 кВт·ч электроэнергии требуется примерно 0, 12 м3 охлаждающей воды, которая поступает к конденсатору с температурой, примерно равной температуре окружающей среды. В конденсаторе она нагреется на 8—10°С и покинет его.

Например, всего один энергоблок мощностью 300 МВт за 1 с использует 10 м3 охлаждающей воды. Для его работы требуется расход воды, примерно равный среднегодовому расходу Москва-реки в черте города. Для работы насосов, обслуживающих этот энергоблок, требуется электродвигатель мощностью 2, 5 МВт.

Огромно и количество используемого воздуха. Для выработки 1 кВт·ч электроэнергии требуется примерно 5 м3 воздуха.

Для нормальной работы ТЭС, кроме «сырья» (топливо, охлаждающая вода, воздух) требуется масса других материалов: масло для работы систем смазки, регулирования и защиты турбин, реагенты (смолы) для очистки рабочего тела, многочисленные ремонтные материалы.

Наконец, мощные ТЭС обслуживаются большим количеством персонала, который обеспечивает текущую эксплуатацию, техническое обслуживание оборудования, анализ технико-экономических показателей, снабжение, управление и т.д. Ориентировочно можно считать, что на 1 МВт установленной мощности требуется 1 персона и, следовательно, персонал мощной ТЭС составляет несколько тысяч человек.

 

Паровые котлы и их схемы

 

Любая конденсационная паротурбинная электростанция включает в себя четыре обязательных элемента:

- энергетический котел, или просто котел, в который подводится питательная вода под большим давлением, топливо и атмосферный воздух для горения. В топке котла идет процесс горения — химическая энергия топлива превращается в тепловую и лучистую энергию. Питательная вода протекает по трубной системе, расположенной внутри котла. Сгорающее топливо является мощным источником теплоты, которая передается питательной воде. Последняя нагревается до температуры кипения и испаряется. Получаемый пар в этом же котле перегревается сверх температуры кипения. Этот пар с температурой 540 °С и давлением 13—24 МПа по одному или нескольким трубопроводам подается в паровую турбину;

- турбоагрегат, состоящий из паровой турбины, электрогенератора и возбудителя. Паровая турбина, в которой пар расширяется до очень низкого давления (примерно в 20 раз меньше атмосферного), преобразует потенциальную энергию сжатого и нагретого до высокой температуры пара в кинетическую энергию вращения ротора турбины. Турбина приводит электрогенератор, преобразующий кинетическую энергию вращения ротора генератора в электрический ток. Электрогенератор состоит из статора, в электрических обмотках которого генерируется ток, и ротора, представляющего собой вращающийся электромагнит, питание которого осуществляется от возбудителя;

- конденсатор служит для конденсации пара, поступающего из турбины, и создания глубокого разрежения. Это позволяет очень существенно сократить затрату энергии на последующее сжатие образовавшейся воды и одновременно увеличить работоспособность пара, т.е. получить большую мощность от пара, выработанного котлом;

- питательный насос для подачи питательной воды в котел и создания высокого давления перед турбиной.

Таким образом, в ПТУ над рабочим телом совершается непрерывный цикл преобразования химической энергии сжигаемого топлива в электрическую энергию.

Кроме перечисленных элементов, реальная ПТУ дополнительно содержит большое число насосов, теплообменников и других аппаратов, необходимых для повышения ее эффективности.

Рассмотрим подробно технологический процесс производства электроэнергии на ТЭС, работающей на газе (рис. см. в приложении).

Основными элементами рассматриваемой электростанции являются котельная установка, производящая пар высоких параметров; турбинная или паротурбинная установка, преобразующая теплоту пара в механическую энергию вращения ротора турбоагрегата, и электрические устройства (электрогенератор, трансформатор и т.д.), обеспечивающие выработку электроэнергии.

Основным элементом котельной установки является котел. Газ для работы котла подается от газораспределительной станции, подключенной к магистральному газопроводу к газораспределительному пункту (ГРП) 1. Здесь его давление снижается до нескольких атмосфер и он подается к горелкам 2, расположенным в поде котла (такие горелки называются подовыми).

Собственно котел представляет собой П-образную конструкцию с газоходами прямоугольного сечения. Левая ее часть называется топкой. Внутренняя часть топки свободна, и в ней происходит горение топлива, в данном случае газа. Для этого к горелкам специальным дутьевым вентилятором 28 непрерывно подается горячий воздух, нагреваемый в воздухоподогревателе 25. Для повышения температуры воздуха используется рециркуляция: часть дымовых газов, уходящих из котла, специальным вентилятором рециркуляции 29 подается к основному воздуху и смешивается с ним. Горячий воздух смешивается с газом и через горелки котла подается в его топку — камеру, в которой происходит горение топлива. При горении образуется факел, представляющий собой мощный источник лучистой энергии. Таким образом, при горении топлива его химическая энергия превращается в тепловую и лучистую энергию факела.

Стены топки облицованы экранами 19 — трубами, к которым подается питательная вода из экономайзера 24. На схеме 2.5 изображен так называемый прямоточный котёл, в экранах которого питательная вода, проходя трубную систему котла только 1 раз, нагревается и испаряется, превращаясь в сухой насыщенный пар.

По конструктивному выполнению паровые котлы (парогенераторы) подразделяют на барабанные и прямоточные.

Рис. 2.5 - Схема работы прямоточного парогенератора

 

В барабанном парогенераторе (рис. 2.4) имеется стальной барабан, в нижней части которого находится вода, а в верхней части — пар и в экранах которого осуществляется многократная циркуляция питательной воды, а отделение пара от котловой воды происходит в барабане.

По циркуляционной трубе вода поступает в трубки экрана, покрывающие стенки топки. Трубки экрана выполняют стальными, небольшого диаметра (примерно 40 мм снаружи и 32 мм внутри), для того чтобы они смогли выдержать большое давление пара. В крупном парогенераторе каждый час испаряются сотни тонн воды и поэтому трубки имеют общую длину до 50 км. Чтобы повысить эффективность работы парогенератора, вода перед подачей в барабан нагревается в экономайзере, а воздух перед подачей в топку подогревается горячими газами в воздухоподогревателе. Выходящий из барабана пар дополнительно нагревается в пароперегревателе.

В барабанном парогенераторе происходит естественная циркуляция воды и пароводяной смеси за счет их разных плотностей. С увеличением температуры и давления пара уменьшается разность в плотностях воды и пара, что ухудшает их циркуляцию.

В прямоточном парогенераторе (рис. 2.5) барабана нет. Циркуляция воды и пара создается насосами. Вода через водоподогреватель 3 поступает в трубы 1, расположенные в топке, превращается в пар, который затем подается в пароперегреватель 2 и далее в турбину. В воздухоподогревателе 4 происходит подогрев воздуха перед подачей его в топку. Прямоточные парогенераторы требуют качественного регулирования подачи воды. Кроме того, к питательной воде, используемой в парогенераторах этого типа, предъявляют очень высокие требования в отношении ее химической чистоты.

Прямоточные котлы получили широкое распространение, так как они дешевле барабанных. У барабанных парогенераторов при высоких давлениях (свыше 20 МПа) нарушается естественная циркуляция воды и пара.

Прямоточные парогенераторы стали применяться в нашей стране в 30-е годы по инициативе Л. К. Рамзина, который разработал ряд оригинальных конструкций котлов.

Пространство за топкой котла достаточно густо заполнено трубами, внутри которых движется пар или вода. Снаружи эти трубы омываются горячими дымовыми газами, постепенно остывающими при движении к дымовой трубе 26.

Сухой насыщенный пар поступает в основной пароперегреватель, состоящий из потолочного 20, ширмового 21 и конвективного 22 элементов. В основном пароперегревателе повышается его температура и, следовательно, потенциальная энергия. Полученный на выходе из конвективного пароперегревателя пар высоких параметров покидает котел и поступает по паропроводу к паровой турбине.

Мощная паровая турбина обычно состоит из нескольких как бы отдельных турбин — цилиндров.

К первому цилиндру — цилиндру высокого давления (ЦВД) 17 пар подводится прямо из котла, и поэтому он имеет высокие параметры (для турбин СКД — 23, 5 МПа, 540 °С, т.е. 240 ат/540 °С). На выходе из ЦВД давление пара составляет 3—3, 5 МПа (30—35 ат), а температура — 300— 340 °С. Если бы пар продолжал расширяться в турбине дальше от этих параметров до давления в конденсаторе, то он стал бы настолько влажным, что длительная работа турбины была бы невозможной из-за эрозионного износа его деталей в последнем цилиндре. Поэтому из ЦВД относительно холодный пар возвращается обратно в котел в так называемый промежуточный пароперегреватель 23. В нем пар попадает снова под воздействие горячих газов котла, его температура повышается до исходной (540 °С). Полученный пар направляется в цилиндр среднего давления (ЦСД) 16. После расширения в ЦСД до давления 0, 2—0, 3 МПа (2—3 ат) пар поступает в один или несколько одинаковых цилиндров низкого давления (ЦНД) 15.

Таким образом, расширяясь в турбине, пар вращает ее ротор, соединенный с ротором электрического генератора 14, в статорных обмотках которого образуется электрический ток. Трансформатор повышает его напряжение для уменьшения потерь в линиях электропередачи, передает часть выработанной энергии на питание собственных нужд ТЭС, а остальную электроэнергию отпускает в энергосистему.

И котел, и турбина могут работать только при очень высоком качестве питательной воды и пара, допускающем лишь ничтожные примеси других веществ. Кроме того, расходы пара огромны (например, в энергоблоке 1200 МВт за 1 с испаряется, проходит через турбину и конденсируется более 1 т воды). Поэтому нормальная работа энергоблока возможна только при создании замкнутого цикла циркуляции рабочего тела высокой чистоты.

Пар, покидающий ЦНД турбины, поступает в конденсатор 12 — теплообменник, по трубкам которого непрерывно протекает охлаждающая вода, подаваемая циркуляционным насосом 9 из реки, водохранилища или специального охладительного устройства (градирни). Градирня — это железобетонная пустотелая вытяжная башня высотой до 150 м и выходным диаметром 40—70 м, которая создает самотягу для воздуха, поступающего снизу через воздухо-направляющие щиты.

Внутри градирни на высоте 10—20 м устанавливают оросительное (разбрызгивающее) устройство. Воздух, движущийся вверх, заставляет часть капель (примерно 1, 5—2 %) испаряться, за счет чего охлаждается вода, поступающая из конденсатора и нагретая в нем. Охлажденная вода собирается внизу в бассейне, перетекает в аванкамеру, и оттуда циркуляционным насосом она подается в конденсатор. Наряду с оборотной, используют прямоточное водоснабжение, при котором охлаждающая вода поступает в конденсатор из реки и сбрасывается в нее ниже по течению. Пар, поступающий из турбины в межтрубное пространство конденсатора, конденсируется и стекает вниз; образующийся конденсат конденсатным насосом 6 подается через группу регенеративных подогревателей низкого давления (ПНД) 3 в деаэратор 8. В ПНД температура конденсата повышается за счет теплоты конденсации пара, отбираемого из турбины. Это позволяет уменьшить расход топлива в котле и повысить экономичность электростанции. В деаэраторе 8 происходит деаэрация — удаление из конденсата растворенных в нем газов, нарушающих работу котла. Одновременно бак деаэратора представляет собой емкость для питательной воды котла.

Из деаэратора питательная вода питательным насосом 7, приводимым в действие электродвигателем или специальной паровой турбиной, подается в группу подогревателей высокого давления (ПВД).

Регенеративный подогрев конденсата в ПНД и ПВД — это основной и очень выгодный способ повышения КПД ТЭС. Пар, который расширился в турбине от входа до трубопровода отбора, выработал определенную мощность, а поступив в регенеративный подогреватель, передал свое тепло конденсации питательной воде (а не охлаждающей! ), повысив ее температуру и тем самым сэкономив расход топлива в котле. Температура питательной воды котла за ПВД, т.е. перед поступлением в котел, составляет в зависимости от начальных параметров 240—280 °С. Таким образом замыкается технологический пароводяной цикл преобразования химической энергии топлива в механическую энергию вращения ротора турбоагрегата.

Газообразные продукты сгорания топлива, отдав свою основную теплоту питательной воде, поступают на трубы экономайзера 24 и в воздухоподогреватель 25, в которых они охлаждаются до температуры 140—160 °С и направляются с помощью дымососа 27 к дымовой трубе 26. Дымовая труба создает разрежение в топке и газоходах котла; кроме того, она рассеивает вредные продукты сгорания в верхних слоях атмосферы, не допуская их высокой концентрации в нижних слоях.

Если на ТЭС используется твердое топливо, то она снабжается топливоподачей и пылеприготовительной установкой. Прибывающий на ТЭС в специальных вагонах уголь разгружается, дробится до размера кусков 20—25 мм и ленточным транспортером подается в бункер, вмещающий запас угля на несколько часов работы. Из бункера уголь поступает в специальные мельницы, в которых он размалывается до пылевидного состояния. В мельницу непрерывно специальным дутьевым вентилятором подается воздух, нагретый в воздухоподогревателе. Горячий воздух смешивается с угольной пылью и через горелки котла подается в его топку в зону горения.

Пылеугольная ТЭС снабжается специальными электрофильтрами, в которых происходит улавливание сухой летучей зоны. Зола, образующаяся при горении топлива и не унесенная потоком газов, удаляется из донной части топки и транспортируется на золоотвалы.

 

Главный корпус ТЭС

 

Основным строительным сооружением ТЭС является главный корпус. Он состоит из трех отделений: турбинного, деаэраторного и котельного.

Турбинное отделение включает в себя рамный фундамент — железобетонное сооружение, состоящее из нижней фундаментной плиты, установленной на грунт, вертикальных колонн и верхней фундаментной плиты, опирающейся на колонны. На верхнюю фундаментную плиту, расположенную в данном случае на высотной отметке 13, 5 м, устанавливают цугом паровую турбину, электрогенератор и возбудитель (эту совокупность называют турбоагрегатом).

Помещение, в котором располагается турбина, называется машинным залом (машзалом). Турбоагрегаты, закрытые металлическими кожухами, размещаются поперек машзала, между ними имеются свободные пространства на всю высоту здания от нулевой отметки до кровли для установки оборудования, имеющего большую высоту (например, ПВД). Справа и слева от турбоагрегатов в машзале имеются свободные проходы.

Под полом машзала находится конденсационное помещение, поскольку в нем на нулевой высотной отметке располагается конденсатор, присоединенный своим входным патрубком к выходному патрубку турбины. Как правило, на нулевой отметке или ниже ее размещают также конденсатные насосы, насосы маслоснабжения и некоторое другое оборудование. Конденсационное помещение содержит также многочисленные этажерки, на которые устанавливают питательный насос с его приводом (электродвигатель или небольшая паровая турбина), сетевые подогреватели (для ТЭЦ), вспомогательные устройства для пуска и остановки различного оборудования ТЭС.

Котельное отделение находится в правой части главного корпуса. Здесь размещаются котлы. За стеной котельного отделения на открытом воздухе располагаются воздухоподогреватели, дымососы и дымовая труба (обычно общая для нескольких энергоблоков).

Между турбинным и котельным отделением размещают деаэраторное отделение. На деаэраторной этажерке в данном случае высотной отметке 26, 1 м размещают деаэраторы. Конденсат, подвергаемый деаэрации, и пар для его нагрева деаэраторы получают из турбинного отделения. Из деаэраторов питательная вода поступает к питательному насосу и затем в ПВД (а из них — в котлы). В деаэраторном помещении на высотной отметке машзала располагают щиты управления котлами и турбинами со всеми необходимыми приборами и автоматикой. Здесь находятся операторы, управляющие работой ТЭС.

Основное оборудование ТЭС

 

Паровая турбина — самая значимая и самая дорогая часть ТЭС. Неотъемлемой частью конденсационной турбины является конденсатор.

Турбины. Полученный в парогенераторах перегретый пар при температуре ~600°С и давлении 30 МПа по паропроводам передается в сопла. Сопла предназначены для преобразования внутренней энергии пара в кинетическую энергию упорядоченного движения молекул.

Если перед входом в сопло пар имел некоторую начальную скорость С0 и начальное давление р (рис. 2.6), то после выхода из сопла в результате расширения пара происходит увеличение его скорости до значения С1и уменьшение давления до значения р2. Температура пара также при этом значительно понижается.

После выхода из сопла пар подается на рабочие лопатки турбины. Если турбина активная, то между ее рабочими лопатками расширения пара не происходит, следовательно, давление пара не меняется. Абсолютная скорость движения пара уменьшается от С1 до С2 вследствие вращения турбины со скоростью v.

Конструктивно обычно турбина выполняется в виде нескольких ступеней, каждая из которых состоит из одного венца сопловых лопаток и одного венца рабочих лопаток. Сопловые и рабочие лопатки закреплены на окружностях одинакового радиуса.

 

 

Рис. 2.6 - Схема работы активной турбины

 

У реактивной турбины или ступени происходит расширение пара, проходящего через каналы рабочих лопаток. В зависимости от показателей расширения пара в каналах турбины характеризуют ступенями реактивности. В настоящее время турбины выполняют многоступенчатыми, причем в одной и той же турбине могут быть как активные, так и реактивные (с различной степенью реактивности) ступени.

Изменение параметров пара в реактивной ступени турбины показано на рис. 2.7.

Рис. 2.7 - Схема работы реактивной турбины

 

В соплах турбины происходит частичное расширение пара до промежуточного давления р. Дальнейшее расширение пара до давления р2 происходит в каналах между лопатками. Абсолютная скорость пара в сопле увеличивается до значения с, а в каналах между лопатками уменьшается из-за вращения лопаток до значения с2.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2017-03-08; Просмотров: 1439; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.077 с.)
Главная | Случайная страница | Обратная связь