Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
ТЕПЛОВЫЕ И АТОМНЫЕ ЭЛЕКТРОСТАНЦИИСтр 1 из 16Следующая ⇒
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ТУЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Институт высокоточных систем им. В.П. Грязева Кафедра «Электроэнергетика»
КОНСПЕКТ ЛЕКЦИЙ по дисциплине «Общая энергетика» Уровень профессионального образования: высшее образование – бакалавриат Направление (специальность) подготовки: 13.03.02 «Электроэнергетика и электротехника» Профиль (специализация) подготовки: «Электроснабжение» Квалификация выпускника: 68 бакалавр Форма обучения: (очная, заочная)
Тула 2014
Конспект лекций составлен доц. Карницким В.Ю. и обсужден на заседании кафедры «Электроэнергетика» института высокоточных систем им. В.П. Грязева, протокол заседания кафедры № 10 от " 07" октября 2014 г. Зав. кафедрой _______________________ В.М. Степанов
Конспект лекций пересмотрен и утвержден на заседании кафедры «Электроэнергетика» института высокоточных систем им. В.П. Грязева, протокол заседания кафедры №___ от " ___" _____________ 20 г. Зав. кафедрой _______________________ В.М. Степанов Содержание Введение. 5 1 ТЕПЛОВЫЕ И АТОМНЫЕ ЭЛЕКТРОСТАНЦИИ.. 10 1.1 Типы тепловых и атомных электростанций. 10 1.1.1 Типы тепловых электростанций. 10 1.1.2 Типы атомных электростанций. 12 1.2 Классификация различных видов топлива, роль углеводородного топлива, гидроэнергетических ресурсов и ядерного горючего в топливно-энергетическом балансе РФ.. 16 2 ТЕПЛОВЫЕ ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ.. 19 2.1 Теоретические основы преобразования энергии в тепловых двигателях. 19 2.2 Схема преобразования энергии на ТЭС.. 23 2.3 Паровые котлы и их схемы.. 26 2.4 Главный корпус ТЭС.. 31 2.5 Основное оборудование ТЭС.. 32 2.6 Преимущества и недостатки ТЭС.. 35 2.7 Схема преобразования энергии на ТЭЦ.. 37 2.8 Газотурбинные установки. 38 2.9 Парогазотурбинные установки. 40 2.10 Преимущества, недостатки и области применения ГТУ.. 42 3 ЯДЕРНЫЕ ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ.. 45 3.1 История атомной энергетики. 45 3.2 Топливо потребляемое АЭС. Физические основы использования ядерной энергии 46 3.3 Типы ядерных реакторов. 47 3.4 Сравнение реакторов типов ВВЭР и РБМК.. 51 3.5 Технологические схемы производства электроэнергии на АЭС с реакторами типов ВВЭР и РБМК.. 52 3.6 Преимущества и недостатки АЭС по сравнению с ТЭС.. 54 3.7 Текущее положение и перспективы строительства АЭС в России и за рубежом 56 3.8 Паровые турбины.. 57 3.8.1 Типы паровых турбин и области их использования. 57 3.8.2 Основные технические требования к паровым турбинам и их характеристики 62 3.8.3 Устройство паровой турбины.. 64 3.8.4 Проточная часть и принцип действия турбины.. 66 3.9 Энергетический баланс ТЭС и АЭС.. 68 3.10 Тепловые схемы ТЭС и АЭС.. 71 4 ГИДРОЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ.. 74 4.1 Типы гидроэнергетических установок. 74 4.2 Гидроэнергоресурсы.. 75 4.3 Схемы использования гидравлической энергии. 77 4.4 Процесс преобразования гидроэнергии в электрическую на различных типах гидроэнергоустановок. 78 4.5 Современные проблемы комплексного использования гидроресурсов. 85 4.6 Регулирование речного стока. 88 4.7 Проектирование и эксплуатация гидроэнергоустановок. 93 4.8 Традиционная и малая гидроэнергетика. 97 5 НЕТРАДИЦИОННЫЕ ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ ЭНЕРГИИ.. 98 5.1 Солнечные энергоустановки. 98 5.2 Ветровые энергоустановки. 103 5.3 Геотермальные энергоустановки. 106 5.4 Волновые, приливные энергоустановки. 111 5.5 Малые ГЭС.. 112 5.6 Вторичные ресурсы.. 112 6ИСТОЧНИКИ ЭНЕРГОПОТЕНЦИАЛА.. 114 6.1 Типы энергоустановок. 114 6.2 Принцип действия синхронных генераторов. 115 6.3 Типы турбо и гидрогенераторов по мощностям и способам охлаждения. 117 6.3.1 Турбогенераторы.. 117 6.3.2 Гидрогенераторы.. 119 6.4 Социально-экологические аспекты.. 121 6.5 Экономика. 126 6.6 Накопители энергии. 127 6.6.1 Аккумулирующие электрические станции. 127 6.6.2 Механические установки, аккумулирующие энергию.. 130 6.7 Ресурсосберегающие технологии. Использование биологической энергии растений 131 6.7.1 Использование биологической энергии растений. 131 6.7.2 Использование энергии получаемой на полигонах бытовых отходов. 131 БИБЛИОГРАФИЧЕСКИЙ СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ.. 132
Введение
Энергетика как сфера деятельности человеческого общества является большой глобальной системой, включающей как подсистемы окружающую среду и различные отрасли народного хозяйства. Понятия «энергетика» и «энергетическая наука» употребляются давно, однако вкладываемый в них в настоящее время смысл нельзя считать установившимся. Под энергетикой, или энергетической системой, следует понимать совокупность больших естественных (природных) и искусственных (созданных человеком) систем, предназначенных для получения, преобразования, распределения и использования в народном хозяйстве энергетических ресурсов всех видов. На рис. 1 показана такая совокупность систем, их прямые (сплошные линии) и обратные (штриховые линии) связи. При этом подчеркивается системный подход к энергетике, т. е. она рассматривается как большая система, включающая в себя на правах подсистем части других больших систем. Энергетика имеет большое значение в жизни человечества. Уровень ее развития отражает уровень развития производительных сил общества и возможности научно-технического прогресса. Рис. 1 - Структурная схема энергетики и связей ее с другими подсистемами
Развитие энергетики в России начиналось с плана ГОЭЛРО, который не случайно называется Ленинским планом электрификации России. Заложенные в этот план идеи, материально реализовались и составили энергетику как отрасль народного хозяйства. Идеи легли в основу современной энергетической науки, рассматривающей энергетику как большую систему, являющуюся совокупностью развивающихся искусственных систем, взаимодействующих с естественными системами. Отдельные подсистемы большой системы энергетики являются, в свою очередь, также большими системами. Триаспекта энергетики. Энергетика в ее современном состоянии и тем более в ее развитии должна рассматриваться в трех аспектах — техническом, социально-политическом и биосферическом, или экологическом. По мере развития энергетики эти три аспекта проявляются в большой глобальной системе и в отдельных ее подсистемах, например, электроэнергетике, гидроэнергетике, топливоснабжении и т. д. При этом следует иметь в виду тесную взаимосвязь аспектов, которая при последовательном рассмотрении их свойств может не учитываться. Технический аспект энергетики характеризуется прежде всего огромными мощностями, которые получает человек, используя энергетический потенциал планеты. Так, мощность электростанций, существующих в настоящее время в мире, составляет около 2 млрд. кВт. Общая же мощность всех энергетических установок достигает 10 млрд. кВт. Для обеспечения этих мощностей человек ежегодно берет у природы разного топлива, приведенного к условному массой не менее 40—50 млрд. т. При этом КПД использования взятых у природы энергетических ресурсов не очень велик — не более 0, 2%. Отсюда возникает одна из основных задач энергетики — снижение потерь энергии на всех стадиях ее преобразования (от получения энергетических ресурсов до конечного их использования). Для этого необходимо и улучшение оборудования, и более разумное использование полученной энергии, что уже выходит из сферы чисто технической и должно рассматриваться в социальном аспекте Снижение потерь при передаче, получении и распределении электрической энергии зависит в значительной степени от количества израсходованного металла, в основном алюминия. Допуская большие плотности тока в сечении провода (1, 0—1, 2 А/мм2), снижают расход алюминия, но увеличивают потери электроэнергии. Следовательно, стоимость алюминия непосредственно влияет на выбор сечения проводов линий электропередач, т. е. на определение технических характеристик электрической системы. Снижение потерь энергии путем утепления промышленных и жилых зданий, выработки правильных тарифов на электроэнергию, которые бы стимулировали потребление энергии в «провалах» графика нагрузки и приводили бы к уменьшению этого потребления во время максимумов, определяется успешным решением социально-экономических задач. Вопросы быстро нарастающего использования энергетических ресурсов планеты должны рассматриваться не только в техническом аспекте, но и в аспекте влияния энергетических установок и процессов добычи топлива на окружающую среду, т. е. в аспекте экологическом. При этом возникает общий технико-экологический вопрос: при столь высоких темпах развития энергетики не наступит ли полное истощение всех запасов топлива и не произойдет ли это раньше, чем человечество получит в свое распоряжение новые огромные ресурсы термоядерной энергии. Запасы топлива на планете оцениваются по-разному, с очень большими расхождениями в зависимости от вида запасов: готовые к использованию оцениваются в 25 трлн. МВт-ч, разведанные составляют 50 трлн. МВт-ч, а прогнозируемые—100 трлн. МВт-ч. Иными словами, соотношение запасов в зависимости от вида можно записать как 1: 2: 4. Кроме того, на приведенные цифры существенно влияет способ подсчета запасов топлива, а именно: учитывалось ли топливо, находящееся на морском дне, учитывались ли битуминозные пески, какая глубина добычи топлива предполагалась и т. д. Во всяком случае можно утверждать, что еще не на одну сотню лет человечеству хватит ископаемого топлива, получаемого из недр планеты. Например, предполагается, что угля хватит на 600—700 лет. Это конечно, не означает, что экономия топлива не является важнейшей задачей. Современное состояние и перспективы развития энергетики. Развитие человеческого общества и его успехи на пути цивилизации и прогресса непосредственно связаны с повышением производительности труда и улучшением материальных условий жизни людей. Научно-технический и социальный прогресс сопровождается увеличением потребляемой энергии и освоением новых, более эффективных ее видов. Количество потребляемой современными машинами энергии очень велико. Представление о нем может дать следующее образное сравнение: все работоспособное население мира, работая с полным напряжением физических сил по 8 ч в сутки, смогло бы за год выработать одной сотой доли энергии, получаемой в настоящее время за счет сжигания топлива и энергии рек. Ускорение экономического развития страны на основе широкого использования совершенных автоматически управляемых машин, заменяющих физический и нетворческий умственный труд, возможно только при увеличении потребляемой энергии и росте производительности труда. Процесс потребления энергии на нашей планете исторически протекал крайне неравномерно. Ориентировочное представление о нем может дать приведенная на рис. 2 кривая (сплошная линия), указывающая на резкое возрастание потребления энергии начиная с XX в. Так, человечество за всю историю своего существования израсходовало примерно 900—950 тыс. ТВт-ч энергии всех видов, причем более 2/3 этого количества приходится на последние 40 лет. Характерна здесь и неравномерность в потреблении энергии. Так, в доисторическую эпоху каждый человек, использовавший свою мускульную силу и энергию впервые зажженного костра, тратил примерно одинаковое количество энергии. Приближенно можно считать ее Рис. 2 - График изменения расходуемой человечеством энергии и развития культуры
распределение равномерным—1: 1. В настоящее время неравномерность в потреблении энергии на душу населения стала огромна: для различных стран она выражается отношением 1: 40. Потребности в энергии постоянно возрастали, что вынуждало изыскивать новые энергоресурсы и новые способы преобразования энергии из одного вида в другой. Сегодня стало традиционным использование таких видов энергии, как энергия Солнца, химическая энергия органического топлива, механическая энергия воды в реках, морях и океанах, энергия ветра, внутриядерная энергия, получаемая при делении тяжелых ядер. Весьма перспективно использование термоядерной энергии, получаемой при синтезе легких элементов. Реализация синтеза снимет на все исторически обозримое время проблему удовлетворения человечества запасами энергии, т. е. проблему, которая возникает в связи с истощением запасов органического топлива. Примерные соотношения между мощностями искусственных, созданных человеком установок и мощностями естественных геофизических процессов иллюстрируются ниже (мощности приведены в миллиардах киловатт). В течение года Солнце излучает в космос огромное количество энергии Э, из которой на Землю приходится примерно 7, 5-1017 кВт-ч, что соответствует мощности 85 600 млрд. кВт. На 1 км2 поверхности Земли приходится средняя мощность излучения Солнца, равная 17-104 кВт, а средняя мощность использования первичных энергоресурсов, равна примерно 19 кВт. Эти мощности значительно, почти в 104 раз, различаются между собой. Солнце играет основную роль в тепловом балансе Земли. Его мощность излучения, приходящаяся на Землю, во много раз больше мощности явлений природы и мощностей, получаемых человеком. Мощность Солнца соизмерима только с мощностью, развиваемой вращением Земли вокруг оси. Выше перечисленный спектр вопросов и проблем свидетельствует о необходимости широкой подготовки инженера-энергетика. Современный инженер должен не только хорошо ориентироваться в специальных технических областях, но и предвидеть влияние принимаемых решений на окружающую среду и на социально-экономические условия. Например, при сооружении гидроэлектростанций необходимо учитывать, что затопление обширной территории требует перенесения населенных пунктов, что изменяет привычный уклад жизни людей, наносит ущерб сельскому хозяйству. Расходование топлива относится не только к техническому и биосферическому аспектам, но и в значительной мере к социально-политическому аспекту. Так, 30% населения земного шара потребляет более 90% всей вырабатываемой на планете энергии, на долю же 70% населения, преимущественно в развивающихся странах, приходится менее 10% всей энергии. Между тем, уровень промышленности, состояние быта и развитие культуры теснейшим образом связаны с количеством используемой энергии. Запасы энергии разных видов распределены на планете неравномерно и по количеству, и по возможности их реализации. В этом плане интересно сопоставить требуемое число скважин для добычи 500 млн. т нефти в разных странах. В США для этого необходимо 500 тыс. скважин, в России — 50 тыс. скважин, в Иране — только 600 скважин, в Саудовской Аравии — 300, в Кувейте — 100 скважин. Многие из стран, потребляющих наибольшее количество энергии (70%), используют импортируемые энергоносители. Так, Япония более 80% энергетических ресурсов (преимущественно нефть) ввозит из стран, лежащих в районе Персидского залива. Европейские страны получают оттуда же около 20% энергии. США, резко снизили количество энергии, получаемой из этого региона (не более 3—5%). Разумеется, РФ испытывает трудности в получении энергетических ресурсов, связанные прежде всего с тем, что они оказываются лежащими все дальше от обжитых территорий. Поэтому и для отыскания и для реализации этих ресурсов, которые, вообще говоря, значительны, приходится проводить все большие и большие работы. Созданные человеком энергетические установки, имеющие огромные суммарные мощности, оказывают заметное влияние на естественные процессы, происходящие в биосфере. Это влияние во многих случаях носит негативный характер, который необходимо учитывать при рассмотрении биосферического аспекта энергетики. В будущем еще заметнее проявятся особенности энергетики, связанные с соизмеримостью мощностей искусственных энергетических установок и естественных геофизических процессов, влияющих на состояние планеты. Энергетика будет играть все более значительную роль, являясь как демографическим, социальным, так и политическим фактором, влияющим на взаимоотношения между государствами и во многом определяющим политику ряда стран. Направленные по всему миру потоки различных энергетических ресурсов проявляются в виде мощных факторов при развитии взаимоотношений, возникновении конфликтов и заключении договоров между государствами. Типы атомных электростанций
На атомных электростанциях, так же как на электростанциях, работающих на органическом топливе, осуществляется процесс превращения энергии, содержащейся в рабочей среде (паре), в электрическую. Различие между процессами, происходящими на АЭС и ТЭС, состоит лишь в том, что в одном случае используется энергия, выделяющаяся при распаде ядер тяжелых элементов, в другом — при горении топлива. Атомные электрические станции, предназначенные только для производства электроэнергии, называют конденсационными электрическими станциями (КЭС). На таких электростанциях устанавливаются паровые турбины с глубоким вакуумом в конденсаторе, так как чем ниже давление пара на выходе из турбины, тем большая часть энергии рабочей среды превращается в электрическую. При этом основной поток пара конденсируется в конденсаторе и большая часть содержащейся в нем энергии теряется с охлаждающей водой. Атомные электростанции, на которых отработавший пар наряду с выработкой электроэнергии используется для теплоснабжения, называют атомными теплоэлектроцентралями(АТЭЦ). Электростанции, предназначенные для комбинированной выработки электрической энергии и отпуска пара, а также горячей воды тепловому потребителю имеют паровые турбины с промежуточными отборами пара или с противодавлением. Можно также использовать внутриядерную энергию только для целей горячего водоснабжения на атомных станциях теплоснабжения (АСТ). В АСТ парообразование отсутствует. В последние годы в некоторых странах большое внимание уделяется использованию теплоты комбинированных атомных установок для опреснения морских и солончаковых вод. К настоящему времени атомная энергетика используется в основном для получения электроэнергии. В качестве двигателя на атомных электростанциях пока применяют только паровые турбины. Но в отношении реакторных установок существует большое разнообразие, отражающееся на общей организации технологического процесса электростанции и требующее их классификации. В этом отношении для атомных электростанций наибольшее значение имеет классификация по числу контуров. В числе действующих имеются одноконтурные, двухконтурные и трехконтурные АЭС. В системе любой АЭС различают теплоноситель и рабочее тело. Рабочим телом, то есть средой, совершающей работу, с преобразованием тепловой энергии в механическую, является водяной пар. Требования к чистоте пара, поступающего на турбину, настолько высоки, что могут быть удовлетворены с экономически приемлемыми показателями только при конденсации всего пара и возврате конденсата в цикл. Поэтому контур рабочего тела для АЭС всегда замкнут и добавочная вода поступает в него лишь в небольших количествах для восполнения утечек и некоторых других потерь конденсата. Назначение теплоносителя на АЭС — отводить теплоту, выделяющуюся в реакторе. Для предотвращения отложений на тепловыделяющих элементах необходима высокая чистота теплоносителя. Поэтому для него также необходим замкнутый контур и в особенности потому, что теплоноситель реактора всегда радиоактивен. Если контуры теплоносителя и рабочего тела не разделены, АЭС называют одноконтурной. В реакторе происходит парообразование, пар направляется в турбину, где производит работу, превращаемую в генераторе в электроэнергию. После конденсации всего пара в конденсаторе конденсат насосом подается снова в реактор. Такие реакторы работают с принудительной циркуляцией теплоносителя, для чего устанавливают главный циркуляционный насос. В одноконтурных схемах все оборудование работает в радиоактивных условиях, что осложняет его эксплуатацию. Большое преимущество таких схем — простота и большая экономичность. Если контуры теплоносителя и рабочего тела разделены, то АЭС называют двухконтурной. Соответственно контур теплоносителя называют первым, а контур рабочего тела — вторым. В таких схемах реактор охлаждается теплоносителем, прокачиваемым через него и парогенератор главным циркуляционным насосом. Образованный таким образом контур теплоносителя является радиоактивным, он включает в себя не все оборудование станции, а лишь его часть. В систему первого контура входит компенсатор объема (давления), так как объем теплоносителя изменяется в зависимости от температуры. Пар из парогенератора двухконтурной АЭС поступает в турбину, затем в конденсатор, а конденсат из него насосом возвращается в парогенератор. Образованный, таким образом, второй контур включает в себя оборудование, работающее в отсутствие радиационной активности; это упрощает эксплуатацию станции. На двухконтурной станции обязателен парогенератор— элемент, разделяющий оба контура, поэтому он в равной степени принадлежит как первому, так и второму. Передача теплоты через поверхность нагрева требует перепада температур между теплоносителем и кипящей водой в парогенераторе. Для водного теплоносителя это означает поддержание в первом контуре более высокого давления, чем давление пара, подаваемого на турбину. Стремление избежать закипания теплоносителя в активной зоне реактора приводит к необходимости иметь в первом контуре давление, существенно превышающее давление во втором контуре. Ядерное топливо, находящееся в тепловыделяющих элементах определенной формы, доставляется в контейнерах на электростанцию и с помощью перегрузочного крана загружается в активную зону реактора. Кассеты с отработавшими твэлами помещаются в бассейн, где выдерживаются в течение определенного времени. Когда радиоактивность горючего и материала кассет заметно уменьшается, кассеты в контейнерах вывозят на перерабатывающие заводы. Теплота, выделяющаяся в реакторе и воспринятая теплоносителем, передается рабочей среде в парогенераторе. Пар, образовавшийся в ПГ или в реакторе (при одноконтурной схеме), направляется по паропроводу к турбине. На схеме контура двухконтурной АЭС пар направляется к турбине по трубопроводу, питательная вода подается в ПГ. В качестве теплоносителя в двухконтурной схеме АЭС, могут быть использованы также и газы. Газовый теплоноситель прокачивается через реактор и парогенератор газодувкой, играющей ту же роль, что и главный циркуляционный насос, но в отличие от водного для газовых теплоносителей давление в первом контуре может быть не только выше, но и ниже, чем во втором. Каждый из описанных двух типов АЭС с водным теплоносителем имеет свои преимущества и недостатки, поэтому развиваются АЭС обоих типов. У них имеется ряд общих черт, к их числу относится работа турбин на насыщенном паре средних давлений.Одноконтурные и двухконтурные АЭС с водным теплоносителем наиболее распространены, причем в мире в основном предпочтение отдается двухконтурным АЭС. В процессе эксплуатации возможно возникновение неплотностей на отдельных участках парогенератора, особенно в местах вварки парогенераторных трубок в коллекторе или за счет коррозионных повреждений самих трубок. Если давление в первом контуре выше, чем во втором, то может возникнуть перетечка теплоносителя, вызывающая радиоактивность второго контура. В определенных пределах такая перетечка не нарушает нормальной эксплуатации АЭС. Но существуют теплоносители, интенсивно взаимодействующие с паром и водой. Это может создать опасность выброса радиоактивных веществ в обслуживаемые помещения. Таким теплоносителем является, например, жидкий натрий. Поэтому создают дополнительный, промежуточныйконтур для того, чтобы даже в аварийных ситуациях можно было избежать контакта радиоактивного натрия с водой или водяным паром. Такие АЭС называют трехконтурными. Радиоактивный жидкометаллический теплоноситель насосом прокачивается через реактор и промежуточный теплообменник, в котором отдает теплоту нерадиоактивному жидкометаллическому теплоносителю. Последний прокачивается через парогенератор по системе, образующей промежуточный контур. Давление в промежуточном контуре поддерживается более высоким, чем в первом. Поэтому перетечка радиоактивного натрия из первого контура в промежуточный невозможна. В связи с этим при возникновении неплотности между промежуточным и вторым контурами контакт воды или пара будет только с нерадиоактивным натрием. Система второго контура для трехконтурной схемы аналогична двухконтурной схеме. Трехконтурные АЭС наиболее дорогие из-за большого количества оборудования. Кроме классификации атомных электростанций по числу контуров можно выделить отдельные типы АЭС в зависимости от: 1) типа реактора — на тепловых или быстрых нейтронах; 2) параметров и типа теплоносителя — с газовым теплоносителем, теплоносителем «вода под давлением», жидкометаллическим и др.; 3) конструктивных особенностей реактора, например с реакторами канального или корпусного типа, 4) типа замедлителя реактора, например графитовым или тяжеловодным замедлителем, и др. В настоящее время в мире существует пять типов ядерных реакторов. Это реактор ВВЭР (водо-водяной энергетический реактор), РБМК (реактор большой мощности канальный), реактор на тяжелой воде, реактор с шаровой засыпкой и газовым контуром, реактор на быстрых нейтронах. У каждого типа реактора есть особенности конструкции, отличающие его от других, хотя, безусловно, отдельные элементы конструкции могут заимствоваться из других типов. ВВЭР строились в основном на территории бывшего СССР и в Восточной Европе, реакторов типа РБМК много в России, странах Западной Европы и Юго-Восточной Азии, реакторы на тяжелой воде в основном строились в Америке. Вся мировая атомная энергетика базируется на корпусных реакторах. Как следует из самого названия, их главной особенностью является использование для размещения активной зоны толстостенного цилиндрического корпуса. В свою очередь корпусные реакторы выполняют с водой под давлением (в английской транскрипции PWR — pressed water reactor, в русской ВВЭР — водо-водяной энергетический реактор), и кипящие (BWR — boiling water reactor). В водо-водяном реакторе циркулирует только вода под высоким давлением. В кипящем реакторе в его корпусе над поверхностью жидкости образуется насыщенный водяной пар, который направляется в паровую турбину. В России реакторы кипящего типа не строят. В корпусных реакторах и теплоносителем, и замедлителем является вода. Альтернативой корпусным реакторам являются канальные реакторы, которые строили только в Советском Союзе под названием РБМК — реактор большой мощности канальный. Такой реактор представляет собой графитовую кладку с многочисленными каналами, в каждый из которых вставляется как бы небольшой кипящий реактор малого диаметра. Замедлителем в таком реакторе служит графит, а теплоносителем — вода. Паровые котлы и их схемы
Любая конденсационная паротурбинная электростанция включает в себя четыре обязательных элемента: - энергетический котел, или просто котел, в который подводится питательная вода под большим давлением, топливо и атмосферный воздух для горения. В топке котла идет процесс горения — химическая энергия топлива превращается в тепловую и лучистую энергию. Питательная вода протекает по трубной системе, расположенной внутри котла. Сгорающее топливо является мощным источником теплоты, которая передается питательной воде. Последняя нагревается до температуры кипения и испаряется. Получаемый пар в этом же котле перегревается сверх температуры кипения. Этот пар с температурой 540 °С и давлением 13—24 МПа по одному или нескольким трубопроводам подается в паровую турбину; - турбоагрегат, состоящий из паровой турбины, электрогенератора и возбудителя. Паровая турбина, в которой пар расширяется до очень низкого давления (примерно в 20 раз меньше атмосферного), преобразует потенциальную энергию сжатого и нагретого до высокой температуры пара в кинетическую энергию вращения ротора турбины. Турбина приводит электрогенератор, преобразующий кинетическую энергию вращения ротора генератора в электрический ток. Электрогенератор состоит из статора, в электрических обмотках которого генерируется ток, и ротора, представляющего собой вращающийся электромагнит, питание которого осуществляется от возбудителя; - конденсатор служит для конденсации пара, поступающего из турбины, и создания глубокого разрежения. Это позволяет очень существенно сократить затрату энергии на последующее сжатие образовавшейся воды и одновременно увеличить работоспособность пара, т.е. получить большую мощность от пара, выработанного котлом; - питательный насос для подачи питательной воды в котел и создания высокого давления перед турбиной. Таким образом, в ПТУ над рабочим телом совершается непрерывный цикл преобразования химической энергии сжигаемого топлива в электрическую энергию. Кроме перечисленных элементов, реальная ПТУ дополнительно содержит большое число насосов, теплообменников и других аппаратов, необходимых для повышения ее эффективности. Рассмотрим подробно технологический процесс производства электроэнергии на ТЭС, работающей на газе (рис. см. в приложении). Основными элементами рассматриваемой электростанции являются котельная установка, производящая пар высоких параметров; турбинная или паротурбинная установка, преобразующая теплоту пара в механическую энергию вращения ротора турбоагрегата, и электрические устройства (электрогенератор, трансформатор и т.д.), обеспечивающие выработку электроэнергии. Основным элементом котельной установки является котел. Газ для работы котла подается от газораспределительной станции, подключенной к магистральному газопроводу к газораспределительному пункту (ГРП) 1. Здесь его давление снижается до нескольких атмосфер и он подается к горелкам 2, расположенным в поде котла (такие горелки называются подовыми). Собственно котел представляет собой П-образную конструкцию с газоходами прямоугольного сечения. Левая ее часть называется топкой. Внутренняя часть топки свободна, и в ней происходит горение топлива, в данном случае газа. Для этого к горелкам специальным дутьевым вентилятором 28 непрерывно подается горячий воздух, нагреваемый в воздухоподогревателе 25. Для повышения температуры воздуха используется рециркуляция: часть дымовых газов, уходящих из котла, специальным вентилятором рециркуляции 29 подается к основному воздуху и смешивается с ним. Горячий воздух смешивается с газом и через горелки котла подается в его топку — камеру, в которой происходит горение топлива. При горении образуется факел, представляющий собой мощный источник лучистой энергии. Таким образом, при горении топлива его химическая энергия превращается в тепловую и лучистую энергию факела. Стены топки облицованы экранами 19 — трубами, к которым подается питательная вода из экономайзера 24. На схеме 2.5 изображен так называемый прямоточный котёл, в экранах которого питательная вода, проходя трубную систему котла только 1 раз, нагревается и испаряется, превращаясь в сухой насыщенный пар. По конструктивному выполнению паровые котлы (парогенераторы) подразделяют на барабанные и прямоточные. Рис. 2.5 - Схема работы прямоточного парогенератора
В барабанном парогенераторе (рис. 2.4) имеется стальной барабан, в нижней части которого находится вода, а в верхней части — пар и в экранах которого осуществляется многократная циркуляция питательной воды, а отделение пара от котловой воды происходит в барабане. По циркуляционной трубе вода поступает в трубки экрана, покрывающие стенки топки. Трубки экрана выполняют стальными, небольшого диаметра (примерно 40 мм снаружи и 32 мм внутри), для того чтобы они смогли выдержать большое давление пара. В крупном парогенераторе каждый час испаряются сотни тонн воды и поэтому трубки имеют общую длину до 50 км. Чтобы повысить эффективность работы парогенератора, вода перед подачей в барабан нагревается в экономайзере, а воздух перед подачей в топку подогревается горячими газами в воздухоподогревателе. Выходящий из барабана пар дополнительно нагревается в пароперегревателе. В барабанном парогенераторе происходит естественная циркуляция воды и пароводяной смеси за счет их разных плотностей. С увеличением температуры и давления пара уменьшается разность в плотностях воды и пара, что ухудшает их циркуляцию. В прямоточном парогенераторе (рис. 2.5) барабана нет. Циркуляция воды и пара создается насосами. Вода через водоподогреватель 3 поступает в трубы 1, расположенные в топке, превращается в пар, который затем подается в пароперегреватель 2 и далее в турбину. В воздухоподогревателе 4 происходит подогрев воздуха перед подачей его в топку. Прямоточные парогенераторы требуют качественного регулирования подачи воды. Кроме того, к питательной воде, используемой в парогенераторах этого типа, предъявляют очень высокие требования в отношении ее химической чистоты. Прямоточные котлы получили широкое распространение, так как они дешевле барабанных. У барабанных парогенераторов при высоких давлениях (свыше 20 МПа) нарушается естественная циркуляция воды и пара. Прямоточные парогенераторы стали применяться в нашей стране в 30-е годы по инициативе Л. К. Рамзина, который разработал ряд оригинальных конструкций котлов. Пространство за топкой котла достаточно густо заполнено трубами, внутри которых движется пар или вода. Снаружи эти трубы омываются горячими дымовыми газами, постепенно остывающими при движении к дымовой трубе 26. Сухой насыщенный пар поступает в основной пароперегреватель, состоящий из потолочного 20, ширмового 21 и конвективного 22 элементов. В основном пароперегревателе повышается его температура и, следовательно, потенциальная энергия. Полученный на выходе из конвективного пароперегревателя пар высоких параметров покидает котел и поступает по паропроводу к паровой турбине. Мощная паровая турбина обычно состоит из нескольких как бы отдельных турбин — цилиндров. К первому цилиндру — цилиндру высокого давления (ЦВД) 17 пар подводится прямо из котла, и поэтому он имеет высокие параметры (для турбин СКД — 23, 5 МПа, 540 °С, т.е. 240 ат/540 °С). На выходе из ЦВД давление пара составляет 3—3, 5 МПа (30—35 ат), а температура — 300— 340 °С. Если бы пар продолжал расширяться в турбине дальше от этих параметров до давления в конденсаторе, то он стал бы настолько влажным, что длительная работа турбины была бы невозможной из-за эрозионного износа его деталей в последнем цилиндре. Поэтому из ЦВД относительно холодный пар возвращается обратно в котел в так называемый промежуточный пароперегреватель 23. В нем пар попадает снова под воздействие горячих газов котла, его температура повышается до исходной (540 °С). Полученный пар направляется в цилиндр среднего давления (ЦСД) 16. После расширения в ЦСД до давления 0, 2—0, 3 МПа (2—3 ат) пар поступает в один или несколько одинаковых цилиндров низкого давления (ЦНД) 15. Популярное:
|
Последнее изменение этой страницы: 2017-03-08; Просмотров: 1301; Нарушение авторского права страницы