Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Передача информации в клетке



Современные представления о роли ДНК в передаче наследственной информации лучше всего отражает " Центральная догма молекулярной биологии", сформулированная Ф. Криком в 1970 году.

Автор предложил разделить все виды переноса биологической информации в клетке на три группы:

1. Процессы, существование которых уже показано: ДНК → ДНК, ДНК → РНК, РНК → белок, РНК → РНК.

2. Процессы, которые не были экспериментально выявлены и с теоретической точки зрения не казались строго необходимыми: РНК → ДНК, ДНК → белок.

3. Невозможные переносы: белок → белок, белок → РНК, белок → ДНК. Таким образом, информация во всех случаях в клетке переносится однонаправленно по цепи: ДНК → РНК → белок. Белок не может служит матрицей для синтеза ДНК или РНК, поскольку у молекул белка нет свойства комплементарности отдельных частей молекулы, что бы позволяло использовать её как матрицу.

" Центральная догма молекулярной биологии". Сплошные стрелки показывают обычный путь переноса генетической информации, пунктирной - более редкие пути, также существующие в природе

 

Синтез одной молекулы белка, состоящего из 150 ами­нокислот, идет примерно за
1, 5 минуты, т. е. со скоростью 2 аминокислоты в секунду. Он зависит от многих факто­ров. Например, состояние рибосомы может оказать влия­ние на считывание информации. Рибосома «читает с ошибками», если на нее воздействовать какими-либо внешними факторами, к примеру облучением, химиче­скими веществами, способными изменять структуру и функцию рибосомы.

Однако если переносы типа ДНК→ ДНК, ДНК→ РНК, РНК→ РНК и РНК→ белок имели экспери­ментальные прямые или непрямые доказательства, то в пользу других переносов доводов и теоретических обос­нований в то время не было.

Изучение механизмов взаимодействия с клеткой опухолеродных вирусов натолкнуло на мысль о возможности существования иных типов связей. В 1969-1971 гг. Р. Дульбеко экспериментально доказал, что ДНК опухолеродного вируса прочно связывается с ДНК клетки, находя в ее хромосомах тайное убежище. Но опухолеродные вирусы делятся на две большие группы: ДНК-содержащие и РНК-содержащие. Включение вирусной ДНК в ДНК клетки и их интеграцию представить легко. Но как применить эту гипотезу к РНК-содержащим вирусам?

В 60-х годах Г. Темин высказал предположение, со­гласно которому «жизненный цикл» РНК-содержащих опухолеродных вирусов должен включать стадию обра­зования ДНК-продукта — провируса. Это явно противо­речило центральной догме молекулярной биологии, гла­сившей, что генетическая информация передается только в одном направлении: ДНК→ РНК→ белок. Если до­пустить, что существует и путь РНК→ ДНК, то в клетке должен быть и специальный фермент, участвующий в синтезе такого рода. В 1970 г. Г. Темин и С. Мизутаниобнаружили в составе вируса саркомы Рауса (РНК-содержащий вирус) фермент, способный синтезировать ДНК на матрице РНК. Этот фермент назвали обратной транскриптазой или РНК-зависимой ДНК-полимеразой (ревертазой, по В. А. Энгельгардту). Одновременно Д. Балтимор обнаружил фермент, синтезирующий ДНК, у вируса миелобластоза птиц. Ревертаза в настоящее время найдена во всех без исключения РНК-содержащих опухолеродных вирусах. В 1975 г. Р. Дульбеко, Г. Темину и Д. Балтимору была присуждена Нобелевская пре­мия за открытие процесса передачи наследственной ин­формации, который получил название обратной транс­крипции. Формула центральной догмы молекулярной био­логии дополнилась:

---------------- ДНК ← → РНК → белок

Процесс обратной транскрипции состоит из двух эта­пов. Сначала на РНК-матрице синтезируется нить ДНК, т. е. образуется промежуточный продукт реакции, состоя­щий из гибридных молекул, одна нить которых — вирус­ная РНК, другая — комплементарная ей синтезирован­ная нить ДНК. На ДНК-вой нити гибридной молекулы синтезируется вторая нить ДНК и получается конечный продукт реакции — двухцепочечная спиральная молеку­ла ДНК, содержащая генетическую информацию, пол­ностью переписанную с вирусной РНК. Оба этапа осу­ществляются, по-видимому, одним и тем же вирусным ферментом, точнее, его активным центром, т. е. ревертаза обладает и РНК-зависимой и ДНК-зависимой ДНК-полимеразной активностью и ведет всю реакцию от начала до конца.

Открытие ревертазы натолкнуло на мысль, что путем выявления ее в клетках можно осуществлять раннюю и быструю диагностику злокачественных опухолей и лей­козов. Однако вскоре обнаружилось, что ревертазы свой­ственны и тканям здоровых, не зараженных вирусами организмов. Особенно много их оказалось в эмбриональ­ных клетках. Тем не менее существуют количественные различия ревертаз в опухолевых и нормальных клетках, за исключением эмбриональных. Установлены также различия в активности и физико-химических свойствах ревертаз онкогенных вирусов и нормальных клеток. Несомненно, обратная транскрипция нужна для злокаче­ственной трансформации.

Наличие ревертазы во всех нормальных клетках сви­детельствует о возможности передачи информации от РНК к ДНК. Но с какой целью? Отмечено, что на опре­деленной стадии эмбриогенеза в клетках амфибий резко возрастает число генов, кодирующих рибосомальную РНК. Вместо двух копий (2 гомологичные хромосомы) в клетках обнаруживается по несколько сотен копий каждого гена, которые определенный период эмбриоге­неза функционируют изолированно от хромосомы, а за­тем разрушаются. В 1971 г. Тартоф открыл такое же явление и у дрозофилы. Оно было названо амплифика­цией генов. Механизм амплификации не известен. Одна­ко установлено, что в условиях повышенного требования синтеза белка в клетке происходит размножение генов рибосомальной РНК методом обратной транскрипции. Это обеспечивает синтез РНК не на хромосомной матри­це, а на матрице генов, образующихся в цитоплазме. Очевидно, амплификация генов играет существенную роль в регуляции феногенетических процессов и проис­ходит всегда, когда требуется увеличить количество белка.

 

Литература

1. Айала, Ф. Современная генетика / Ф. Айала, Дж. Кайгер. – М.: Мир, 1987. – Т.1. – 295 с; Т.2. – 368 с; Т.3.

2. Алиханян, С. И. Общая генетика / С. И. Алиханян, А. П. Акифьев,
Л. С. Чернин. – М.: Высш. шк., 1985.

3. Бокуть, С. Б. Молекулярная биология: молекулярные механизмы хранениия, воспроизведения и реализации генетической информации / С. Б. Бокуть, Н. В. Герасимович, А. А. Милютин. – Мн.: Высш. шк., 2005.

4. Дубинин, Н. П. Общая генетика / Н. П. Дубинин. – М.: Наука, 1986.

5. Жимулев, И. Ф. Общая и молекулярная генетика / И. Ф. Жимулев. – Новосибирск: Изд-во Новосибирского ун-та, 2002.

6. Жученко, А. А. Генетика / А. А Жученко, Ю. Л. Гужов,
В. А. Пухальский. – М.: Колос, 2004.

 


ИЗМЕНЧИВОСТЬ (6 часов)

Лекция 12


Поделиться:



Популярное:

  1. В зависимости от траектории полета мяча верхняя передача выполняется в средней или низкой стойках.
  2. В. Передача иерархических методов
  3. ВЗАИМНАЯ ИНДУКЦИЯ. ТРАНСФОРМАТОРЫ. ПЕРЕДАЧА ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ.
  4. Влияние ксенобиотиков на физико-химические свойства цитоплазмы, транспортные функции биологических мембран и метаболические процессы в клетке.
  5. Глава V.5. БЕЗВОЗМЕЗДНАЯ ПЕРЕДАЧА ЗЕМЕЛЬНЫХ УЧАСТКОВ,
  6. Игроки располагаются в зонах 6, 3 и 4. Передача мяча из зоны 6 в зону 3, из зоны 3 в зону 4, в зоне 4 игрок
  7. Из зоны 3 может быть выполнена в зоны 4 и 2. При этом передача на удар может выполняться как стоя лицом к нападающему так и стоя спиной к нему. Передача назад,
  8. Контроль за передачами продуктов из дома
  9. Обмен и передача технологии. Формы и методы.
  10. Обучение – это передача знаний.
  11. Передача аргументов в базовые конструкторы
  12. Передача в прыжке с передачи партнера.


Последнее изменение этой страницы: 2017-03-08; Просмотров: 547; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь