Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Нехромосомное (цитоплазматическое) наследование



Не все эукариотические гены локализованы в хромосомах клеточных ядер. После переоткрытия менделеевских законов наследование стало ясно, что некоторые типы изменчивости не подчиняются этим законам. В 1909 г. Карл Корренс опубликовал работу по наследованию пестролистности у Mirabilis galapa, в которой был описан не менделевский тип наследования.

Для многих видов декоративных растений характерно пёстролистность – появление белых и жёлтых пятен и полос на листьях зелёных растений. Жёлтые участки могут быть небольших размеров, но иногда жёлтыми становятся целые побеги, тогда как другие остаются зелёными или пёстрыми. Корренс брал пыльцу с цветков, растущих на жёлтых, пёстрых и зелёных побегов, и нанося её (удалив тычинки) на пестики цветов, растущих на побегах всех трёх типов. Свойства, проросших из таких семян растений определяются характером материнского цветка и не зависят от свойств цветка, с которого была взята пыльца.Эти результаты были первым примером цитоплазматической наследственности. Известно, что зелёный цвет растений определяется хлоропластами, содержащими фотосинтетический пигмент – хлорофилл. Зелёные хлоропласты развиваются из самостоятельно делящихся органелл, называемых пластидами, и находящихся в цитоплазме клеток растений. Пластиды клеток из жёлтых участков пёстролистных растений не способны развиваться в нормальные зелёные хлоропласты. Растения, выросшие из семян, завязавшихся в цветках на жёлтых побегах, не способны к фотосинтезу и скоро погибают.

Хлоропластная ДНК (хлДНК) представляет собой замкнутую кольцевую двуспиральную молекулу. Ее размеры варьируют у раз­ных видов растений преимущественно в интервале 130—160 тыс. н. п. В настоящее время полностью расшифрована нуклеотидная последовательность хлДНК ряда видов, в том числе табака и риса. При этом обнаружены общие принципы организации хлоропластной ДНК и ее консервативность (неизменность первичной струк­туры) в ходе эволюции. ХлДНК содержит около 130 генов. В ней представлены по два гена четырех типов (4, 5S, 5S, 16S и 23S) рибосомальных РНК (рРНК), гены всех транспортных РНК (око­ло 30 видов), гены рибосомальных белков (около 20). Гены субъе­диниц РНК-полимеразы — фермента, осуществляющего синтез РНК на хлДНК. Хлоропластный геном кодирует около 40 белков тилакоидной мембраны, участвующих в формировании комплек­сов электронтранспортной цепи. Это составляет около половины входящих в них белков. Остальные белки тилакоидной мембраны кодируются в ядре.ХлДНК содержит ген большой субъединицы ключевого фермента фотосинтеза рибулозодифосфаткарбоксилазы (РДФК).

Организация генетического аппарата хлоропластов и бактерий имеет много общего. По прокариотическому типу организованы промоторы, регулирующие начало транскрипции и локализован­ные в области 35 — 10 н.п. до точки начала транскрипции, и тер­минаторы, определяющие ее окончание. Вместе с тем в отличие от прокариот в хлДНК обнаружены интроны, характерные для генов эукариот.Хлоропластные рибосомы относятся к 70S-типу, характерному для прокариот.

Для каждого вида растений характерно определенное число хлоропластов в клетке, варьирующее у разных видов от несколь­ких единиц до величин, превышающих сотню. Число хлоропластов в клетке, а следовательно, их деление контролируется ядром. Таким образом, формирование всех важнейших структур хлоропласта зависит и от ядра, и цитоплазмы. Это объясняет невыполнимость идеи создания культуры изолированных хлоропластов, где бы они самостоятельно размножались на питательной среде.

Происхождение ДНК органелл

Широко распространено мнение, что митохондрии и хлоропласты произошли от прокариотических эндосимбионтов, которые обитали в цитоплазме предшественников эукариот. Как полагают, митохондриям дали начало пурпурные бактерии, а хлоропластам (позднее) — цианобактерии (синезеленые водоросли) или близкие к ним организмы.

Симбионты проникли в эукариотические клетки и в ходе эволюции потеряли свою автономность, передав большое число важнейших генов в ядерный геном. В результате независимая бактериальная клетка превратилась в полуавтономную органеллу, сохра­нившую главную исходную функцию — способность к фотосинтезу (у хлоропластов) и систему окислительного фосфорилирования (у митохондрий).

Хотя многие гены этих древних бактерий все еще используются для синтеза белков органеллы, большая их часть по неясным причинам включилась в ядерный геном, где они кодируют ферменты, которые сходны с бактериальными и синтезируются на рибосомах в цитоплазме, а затем переходят в органеллу.

Литература

1. Айала, Ф. Современная генетика / Ф. Айала, Дж. Кайгер. – М.: Мир, 1987. – Т.1. – 295 с; Т.2. – 368 с; Т.3.

2. Алиханян, С. И. Общая генетика / С. И. Алиханян, А. П. Акифьев,
Л. С. Чернин. – М.: Высш. шк., 1985.

3. Дубинин, Н. П. Общая генетика / Н. П. Дубинин. – М.: Наука, 1986.

4. Жученко, А. А. Генетика / А. А Жученко, Ю. Л. Гужов,
В. А. Пухальский. – М.: Колос, 2004.


МОЛЕКУЛЯРНЫЕ ОСНОВЫ НАСЛЕДСТВЕННОСТИ (4 часа)

Лекция 10

Генетическая роль ДНК и РНК, ее доказательство. Репликация, Рестрикция и модификация ДНК.

Структура и функции гена

 

Цель лекции: ознакомить учащихся с процессами репликации, рестрикции и модификации ДНК, познакомить с особенностями структуры и функции гена.

План лекции:

1. Генетика микроорганизмов

2.Способы передачи наследственной информации у бактерий

3. Репликация ДНК

4. Репарация ДНК

 

Генетика микроорганизмов

В 40-х годах XX в. началась новая эра в изучении генетических закономерностей. Генетическими исследо­ваниями занялись не только генетики, но и физики, хи­мики, микробиологи. Объектом исследований стали про­кариоты. Долгое время существовало мнение, что микро­организмы не обладают наследственностью. Микробио­логи и генетики по-разному оценивали их с точки зрения целостной единицы. Первые считали организмом, т.е. живой единицей, огромную популяцию клеток, иными словами, бактериальную культуру. Вторые же рассмат­ривали культуру микроорганизмов как сообщество сво­бодно живущих клеток, а колонию — как потомство од­ной клетки. Информация, по их мнению, должна переда­ваться от клетки к клетке, а не от культуры. В связи с этим было различным и представление об изменчивости бактерий. Так, по мнению микробиологов, кишечная па­лочка, обычно культивирующаяся на лактозе, в резуль­тате адаптации к условиям существования спустя опре­деленное время после посева может дать рост и на среде с другим сахаром (глюкозой). Генетики же полагают, что способность бактерий расти на глюкозе может раз­виться и без всякой связи с углеводом при условии, если в культуре будет хотя бы одна клетка, сбраживающая этот сахар, и будет время для ее размножения.

Сталкиваясь с разнообразием клеток в культуре, мик­робиологи по-разному объясняли это явление. Некоторые утверждали, что бактерии, обладая огромной биологиче­ской пластичностью, могут принимать любую биологиче­скую форму и изменять физиологическую функцию. Та­кое направление получило название плейоморфизм.

Последователи другого направления — мономорфиз­ма — считали, что потомки одной бактерии обладают строго постоянной структурой и функцией и изменчи­вость является результатом засорения культуры.

По мере более глубокого изучения изменчивости бак­терий, их способности адаптироваться к условиям обитания существующие концепций оказывались все более несостоятельными и вытеснялись новыми гипотезами.

Согласно концепции диссоциации, изменчивость обус­ловливалась превращением одной формы бактерий в другую. Например, шероховатая форма непатогенных пневмококков может диссоциировать в гладкую патоген­ную: RS.

В то же время сторонники онтогенной (циклогенной) теории считали, что гладкие и шероховатые формы пнев­мококков — это лишь различные фазы жизненного цик­ла одних и тех же бактерий. Все это свидетельствовало об отсутствии четких представлений о причинах изменчи­вости бактериальных клеток.

Бактерии долго не включались в генетические иссле­дования из-за малых размеров, исключающих возмож­ность достаточно четкого цитологического анализа их, отсутствия конкретных представлений о причинах измен­чивости микроорганизмов, а также навыков по гибридо­логическому анализу.

Датой рождения генетики микроорганизмов следует считать 1943 г., когда появились работы С. Луриа и М. Дельбрюка, которые показали, как следует строить опыты с микроорганизмами, вести учет их признаков, проводить количественный анализ полученных резуль­татов.

Микроорганизмы оказались очень удобным объектом для генетических исследований прежде всего потому, что 1 они являются гаплоидными организмами, у них одна хромосома и она представляет собой молекулу нуклеино­вой кислоты, не связанную с белком. Кроме того, 2 микро­организмы обладают коротким жизненным циклом: не­которые вирусы и бактериофаги живут 20-30 мин, гри­бы— 1-2 ч. За такой промежуток времени вследствие 3 большой скорости размножения они дают многочислен­ное потомство. Это позволяет уловить генетические собы­тия, происходящие с частотой одно на 1 млн. клеток и реже. И, наконец, 4 микроорганизмам присущи два спо­соба размножения — половой и бесполый.

Микроорганизмы как объект генетических исследо­ваний должны обладать рядом достаточно хорошо регистрируемых признаков.Это прежде всего морфологи­ческие признаки, т. е. форма и размер колоний, отдель­ных бактериальных клеток, окраска и характер поверхности (гладкая, шероховатая) колоний и т. д. Эти признаки можно оценить визуально с помощью светового микроскопа или же без специальных приборов и инструментов. Сравнительно несложно учитываются и физиоло­гические (функциональные) признаки бактерий — устойчивость к температуре, свету, химическим веществам, в том числе антибиотикам. Например, фенол или этиловый спирт вызывает у некоторых бактерий образо­вание добавочных жгутиков, а избыток солей кальция подавляет спорообразование. При исключении из среды этих факторов морфологические признаки микроорганиз­мов восстанавливаются. Нарушение способности синте­зировать те или иные необходимые для нормальной жиз­недеятельности бактерий вещества лежит в основе био­химических признаков.

Все микроорганизмы по способу питания делятся на две группы: прототрофы и ауксотрофы. Прототрофы — бактерии дикого типа. Они могут жить на минимальной питательной среде, содержащей лишь минеральные соли и углеводы, и нужные им веще­ства (аминокислоты, витамины и пр.) синтезируют сами. Ауксотрофы — микроорганизмы, потерявшие способность синтезировать определенные вещества. Они живут толь­ко на полной питательной среде, содержащей все нуж­ные для них метаболиты.

Для учета биохимических изменений (мутаций) ис­пользуется метод «отпечатков» и метод «селективных сред». Первый сводится к тому, что на чашку Петри с полной питательной средой высевается исследуемый штамм микроорганизмов и после роста колоний делается отпечаток их на чашки Петри (с минимальной и полной питательной средой) с помощью кусочка бархата, натя­нутого на диск, одинаковый по диаметру с чашкой. За­тем сравнивают колонии, появившиеся на обеих чашках, и отмечают те, которые не дали роста на минимальной среде. Это ауксотрофные мутанты, требующие дальней­шего анализа, чтобы выяснить, какие же вещества они потеряли способность синтезировать. Данный анализ проводится методом селективных сред, т. е. набора сред, содержащих не все метаболиты сразу, а один какой-нибудь (определенный витамин, аминокислоту, азоти­стое основание). В зависимости от того, на какой среде ауксотрофный мутант дает рост, можно определить при­сущий ему биохимический дефект.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2017-03-08; Просмотров: 590; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь