Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Генератор смешанного возбуждения



 

Генератор смешанного возбуждения (рис. 28.8, а) имеет па­раллельную и последовательную обмотки возбуждения. Поток возбуждения создается в основном параллельной обмоткой. По­следовательная обмотка обычно включается согласно с парал­лельной (чтобы МДС обмоток складывались), что обеспечивает получение жесткой внешней характеристики генератора.

Рис. 28.8. Схема включения генера­тора смешанного возбуждения (а)и его внешние характеристики (б)

 

В режиме х.х. генератор имеет только параллельное возбуждение, так как . С появлением нагрузки возника­ет МДС последовательной об­мотки возбуждения, которая, подмагничивая машину, ком­пенсирует размагничивающее действие реакции якоря и па­дение напряжения в якоре.

Внешняя характеристика в этом случае становится наибо­лее жесткой (рис. 28.8, б, кри­вая 2), т. е. напряжение на за­жимах генератора при увели­чении тока остается почти не­изменным. Если же требуется, чтобы напряжение на зажимах потребителя (в конце линии) оставалось практически неизменным, то число витков последовательной обмотки увеличивают так, чтобы МДС этой обмотки компенсировала еще и падение на­пряжения в проводах линии (кривая /).

При встречном включении обмоток возбуждения напряже­ние генератора с ростом тока нагрузки резко уменьшается (кривая 3), что объясняется размагничивающим действием последовательной обмотки возбуждения, МДС которой направлена против МДС парал­лельной обмотки. Встречное включение обмоток применяют лишь в генераторах специального назначения, например в сварочных, где необходимо получить круто падающую внешнюю характеристику.

Генераторы смешанного возбуждения с согласным включени­ем обмоток возбуждения применяют для питания силовой нагруз­ки в случаях, когда требуется постоянство напряжения в линии.

 

Контрольные вопросы

1. Какие характеристики определяют свойства генераторов постоянного тока?

2. Почему у генератора параллельного возбуждения изменение напряжения при
сбросе нагрузки больше, чем у генератора независимого возбуждения?

3. Каковы условия самовозбуждения генераторов постоянного тока?

4. При каком включении обмоток возбуждения генератора смешанного возбуждения внешняя характеристика получается более «жесткой»?

 

 

Глава 29

Основные понятия

Коллекторные машины обладают свойством об­ратимости, т. е. они могут работать как в режиме генератора, так и в режиме двигателя. Поэтому если машину постоянного тока подключить к источнику энергии постоянного тока, то в обмотке возбужде­ния и в обмотке якоря машины появятся токи. Взаи­модействие тока якоря с полем возбуждения создает на якоре электромагнитный момент М, который яв­ляется не тормозящим, как это имело место в гене­раторе, а вращающим.

Под действием электромагнитного момента яко­ря машина начнет вращаться, т. е. машина будет ра­ботать в режиме двигателя, потребляя из сети элек­трическую энергию и преобразуя ее в механичес­кую. В процессе работы двигателя его якорь враща­ется в магнитном поле. В обмотке якоря индуциру­ется ЭДС , направление которой можно опреде­лить по правилу «правой руки». По своей природе она не отличается от ЭДС, наводимой в обмотке якоря генератора. В двигателе же ЭДС направлена против тока , и поэтому ее называют противоэлектродвижущей силой (противо-ЭДС) якоря (рис. 29.1).

 

 

Рис. 29.1. Направление проти­во-ЭДС в обмотке якоря двига­теля

 

 

Для двигателя, работающего с постоянной час­тотой вращения,

. (29.1)

Из (29.1) следует, что подведенное к двигателю напряжение уравновешивается противо-ЭДС обмот­ки якоря и падением напряжения в цепи якоря. На основании (29.1) ток якоря

. (29.2)

Умножив обе части уравнения (29.1) на ток яко­ря , получим уравнение мощности для цепи якоря:

, (29.3)

где — мощность в цепи обмотки якоря; — мощность электрических потерь в цепи якоря.

Для выяснения сущности выражения проделаем следую­щее преобразование:

,

или

.
Но, согласно (25.24),

тогда

, (29.4)

где — угловая частота вращения якоря; — электромаг­нитная мощность двигателя.

Следовательно, выражение представляет собой электромаг­нитную мощность двигателя.

Преобразовав выражение (29.3) с учетом (29.4), получим

.

Анализ этого уравнения показывает, что с увеличением на­грузки на вал двигателя, т. е. с увеличением электромагнитного момента М, возрастает мощность в цепи обмотки якоря , т. е. мощность на входе двигателя. Но так как напряжение, подводимое к двигателю, поддерживается неизменным , то увеличе­ние нагрузки двигателя сопровождается ростом тока в обмотке якоря .

В зависимости от способа возбуждения двигатели постоянного тока, так же как и генераторы, разделяют на двигатели с возбуждени­ем от постоянных магнитов (магнитоэлектрические) и с электромаг­нитным возбуждением. Последние в соответствии со схемой включе­ния обмотки возбуждения относительно обмотки якоря подразделяют на двигатели параллельного (шунтовые), последовательного (сериесные) и смешанного (компаундные) возбуждения.

В соответствии с формулой ЭДС частота вращения двигателя (об/мин)

.

Подставив значение из (29.1), получим (об/мин)

, (29.5)

т. е. частота вращения двигателя прямо пропорциональна на­пряжению и обратно пропорциональна магнитному потоку воз­буждения. Физически это объясняется тем, что повышение на­пряжения U или уменьшение потока Ф вызывает увеличение разности ; это, в свою очередь, ведет к росту тока [см. (29.2)]. Вследствие этого возросший ток повышает вращающий момент, и если при этом нагрузочный момент остается неизмен­ным, то частота вращения двигателя увеличивается.

Из (29.5) следует, что регулировать частоту вращения двига­теля можно изменением либо напряжения U, подводимого к дви­гателю, либо основного магнитного потока Ф, либо электрическо­го сопротивления в цепи якоря .

Направление вращения якоря зависит от направлений магнит­ного потока возбуждения Ф и тока в обмотке якоря. Поэтому, из­менив направление какой-либо из указанных величин, можно из­менить направление вращения якоря. Следует иметь в виду, что переключение общих зажимов схемы у рубильника не дает изме­нения направления вращения якоря, так как при этом одновремен­но изменяется направление тока и в обмотке якоря, и в обмотке возбуждения.

 

Пуск двигателя

 

Ток якоря двигателя определяется формулой (29.2). Если при­нять U и неизменными, то ток зависит от противо-ЭДС . Наибольшего значения ток достигает при пуске двигателя в ход. В начальный момент пуска якорь двигателя неподвижен и в его обмотке не индуцируется ЭДС . Поэтому при непо­средственном подключении двигателя к сети в обмотке его якоря возникает пусковой ток

. (29.6)

Обычно сопротивление невелико, поэтому значение пус­кового тока достигает недопустимо больших значений, в 10—20 раз превышающих номинальный ток двигателя.

Такой большой пусковой ток весьма опасен для двигателя. Во-первых, он может вызвать в машине круговой огонь, а во-вторых, при таком токе в двигателе развивается чрезмерно большой пус­ковой момент, который оказывает ударное действие на вращаю­щиеся части двигателя и может механически их разрушить. И на­конец, этот ток вызывает резкое падение напряжения в сети, что неблагоприятно отражается на работе других потребителей, вклю­ченных в эту сеть. Поэтому пуск двигателя непосредственным подключением в сеть (безреостатный пуск) обычно применяют для двигателей мощностью не более 0, 7—1, 0 кВт. В этих двигате­лях благодаря повышенному сопротивлению обмотки якоря и не­большим вращающимся массам значение пускового тока лишь в 3—5 раз превышает номинальный, что не представляет опасности для двигателя. Что же касается двигателей большей мощности, то при их пуске для ограничения пускового тока используют пуско­вые реостаты (ПР), включаемые последовательно в цепь якоря (реостатный пуск).

Перед пуском двигателя необходимо рычаг Р реостата поста­вить на холостой контакт О (рис. 29.2). Затем включают рубиль­ник, переводят рычаг на первый промежуточный контакт 1 и цепь якоря двигателя оказывается подключенной к сети через наиболь­шее сопротивление реостата .

 

Рис. 29.2. Схема включения пускового реостата

 

Одновременно через рычаг Р и шину Ш к сети подключается обмотка возбуждения, ток в которой в течение всего периода пус­ка не зависит от положения рычага Р, так как сопротивление ши­ны по сравнению с сопротивлением обмотки возбуждения пренеб­режимо мало.

Пусковой ток якоря при полном сопротивлении пускового реостата

. (29.7)

С появлением тока в цепи якоря возникает пусковой мо­мент , под действием которого начинается вращение якоря. По мере нарастания частоты вращения увеличивается противо-ЭДС , что ведет к уменьшению пускового тока и пуско­вого момента.

По мере разгона якоря двигателя рычаг пускового реостата переключают в положения 2, 3 и т. д. В положении 5 рычага рео­стата пуск двигателя заканчивается . Сопротивление пус­кового реостата выбирают обычно таким, чтобы наибольший пус­ковой ток превышал номинальный не более чем в 2—3 раза.

Так как вращающий момент двигателя М прямо пропорциона­лен потоку Ф [см. (25.24)], то для облегчения пуска двигателя па­раллельного и смешанного возбуждения сопротивление реостата в цепи возбуждения следует полностью вывести . Поток возбуждения Ф в этом случае получает наибольшее значение и двигатель развивает необходимый вращающий момент при мень­шем токе якоря.

Для пуска двигателей большей мощности применять пусковые реостаты нецелесообразно, так как это вызвало бы значительные потери энергии. Кроме того, пусковые реостаты были бы громозд­кими. Поэтому в двигателях большой мощности применяют без­реостатный пуск двигателя путем понижения напряжения. Приме­рами этого являются пуск тяговых двигателей электровоза переключением их с последовательного соединения при пуске на параллельное при нормальной работе (см. § 29.6) или пуск двига­теля в схеме «генератор—двигатель» (см. § 29.4).

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2017-03-09; Просмотров: 1093; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.019 с.)
Главная | Случайная страница | Обратная связь