Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Потери и коэффициент полезного действия коллекторной машины постоянного тока



 

В машинах постоянного тока, как и в других электрических машинах, имеют место магнитные, электрические и механические потери (составляющие группу основных потерь) и добавочные потери.

Магнитные потери происходят только в сердечнике якоря, так как только этот элемент магнитопровода машины постоянного тока подвергается перемагничиванию. Величина магнитных по­терь, состоящих из потерь от гистерезиса и потерь от вихревых токов, зависит от частоты перемагничивания значений магнитной индукции в зубцах и спинке якоря, толщины листов электротехнической стали, ее магнитных свойств и качества изо­ляции этих листов в пакете якоря.

Электрические потери в коллекторной машине постоянного тока обусловлены нагревом обмоток и щеточного контакта. Поте­ри в цепи возбуждения определяются потерями в обмотке возбуж­дения и в реостате, включенном в цепь возбуждения:

(29.18)

Здесь — напряжение на зажимах цепи возбуждения. Потери в обмотках цепи якоря

(29.19)

где сопротивление обмоток в цепи якоря , приведенное к рас­четной рабочей температуре , определяется по (13.4) с учетом данных, приведенных в § 13.1 и § 8.4.

Электрические потери также имеют место и в контакте щеток:

(29-20)

где — переходное падение напряжения, В, на щетках обеих полярностей, принимаемое в соответствии с маркой щеток по табл. 27.1.

Электрические потери в цепи якоря и в щеточном контакте за­висят от нагрузки машины, поэтому эти потери называют пере­менными.

Механические потери. В машине постоянного тока механиче­ские потери складываются из потерь от трения щеток о коллектор

(29.21)

трения в подшипниках и на вентиляцию

(29.22)

где — коэффициент трения щеток о коллектор — поверхность соприкосновения всех щеток с коллектором, м2; — удельное давление, Н/м2, щетки [для машин общего назначе­ния =(2÷ 3)·104 Н/м2];

окружная скорость коллектора (м/с) диаметром (м)

. (29.23)

Механические и магнитные потери при стабильной частоте вращения можно считать постоянными.

Сумма магнитных и механических потерь составляют потери х.х.:

. (29.24)

Если машина работает в качестве двигателя параллельного возбуждения в режиме х.х., то она потребляет из сети мощность

. (29.25)

Однако ввиду небольшого значения тока электрические по­тери и весьма малы и обычно не превышают 3% потерь . Поэтому, не допуская заметной ошибки, можно записать , откуда потери х.х.

. (29.26)

Таким образом, потери х.х. (магнитные и механические) могут быть определены экспериментально.

В машинах постоянного тока имеется ряд трудно учитывае­мых потерь — добавочных. Эти потери складываются из потерь от вихревых токов в меди обмоток, потерь в уравнительных соедине­ниях, в стали якоря из-за неравномерного распределения индукции при нагрузке, в полюсных наконечниках, обусловленных пульса­цией основного потока из-за наличия зубцов якоря, и др. Добавоч­ные потери составляют хотя и небольшую, но не поддающуюся точному учету величину. Поэтому, согласно ГОСТу, в машинах без компенсационной обмотки значение добавочных потерь принимают равным 1% от полезной мощности для генераторов или 1% от подводимой мощности для двигателей. В машинах с компенсационной обмоткой значение добавочных потерь прини­мают равным соответственно 0, 5%.

Мощность (Вт) на входе машины постоянного тока (подводимая мощность):

для генератора (механическая мощность)

(29.27)

где — вращающий момент приводного двигателя, Н∙ м;

для двигателя (электрическая мощность)

. (29.28)

Мощность (Вт) на выходе машины (полезная мощ­ность):

для генератора (электрическая мощность)

; (29.29)

для двигателя (механическая мощность)

. (29.30)

Здесь и — момент на валу электрической машины, Н-м; — частота вращения, об/мин.

Коэффициент полезного действия. Коэффициент полезного действия электрической машины представляет собой отношение мощностей отдаваемой (полезной) к подводимой (потребляе­мой) ,:

.

Определив суммарную мощность вышеперечисленных потерь

, (29.31)

можно подсчитать КПД машины по одной из следующих формул:

для генератора

; (29.32)

для двигателя

. (29.33)

Обычно КПД машин постоянного тока составляет 0, 75—0, 90 для машин мощностью от 1 до 100 кВт и 0, 90—0, 97 для машин мощностью свыше 100 кВт. Намного меньше КПД машин посто­янного тока малой мощности. Например, для машин мощностью от 5 до 50 Вт = 0, 15÷ 0, 50. Указанные значения КПД соответст­вуют номинальной нагрузке машины. Зависимость КПД маши­ны постоянного тока от нагрузки выражается графиком , форма которого характерна для электрических машин (рис. 29.13).

 

Рис. 29.13. Зависимость

 

Коэффициент полезного действия электрической машины можно определять: а) методом непосредственной нагрузки по ре­зультатам измерений подведенной и отдаваемой мощностей; б) косвенным методом по результатам измерений потерь.

Метод непосредственной нагрузки применим только для ма­шин малой мощности, для остальных случаев применяется кос­венный метод, как более точный и удобный. Установлено, что при > 80 % измерять КПД методом непосредственной нагрузки неце­лесообразно, так как он дает большую ошибку, чем косвенный метод.

 

Существует несколько кос­венных способов определения КПД. Наиболее прост способ хо­лостого хода двигателя, когда потребляемая машиной постоян­ного тока мощность затрачивает­ся только на потери х.х. [см. (29.26)]. Что же касается элек­трических потерь, то их определяют расчетным путем после пред­варительного измерения электрических сопротивлений обмоток и приведения их к рабочей температуре.

Пример 29.1. Двигатель постоянного тока параллельного возбуждения (см. рис. 29.3) включен в сеть с напряжением 220 В. При номинальной нагрузке и частоте вращения об/мин он потребляет ток = 43 А. Определить КПД двигателя при номинальной нагрузке, если ток х.х. = 4 А, а сопротивления цепей якоря = 0, 25 Ом и возбуждения = 150 Ом. При каком добавочном сопротивлении , включенном последовательно в цепь якоря, частота вращения двигателя будет = 1000 об/мин (нагрузочный момент )?

Решение. Ток возбуждения = 220/150 =1, 47 А. Ток якоря в ре­жиме х.х. = 4 - 1, 47 = 2, 53 А. Ток якоря номинальный = 43 - 1, 47 = 41, 53 А. Сумма магнитных и механических потерь = 220- 2, 53 -2, 532- 0, 25 = 555 Вт. Электрические потери в цепи возбуждения по (29.18)

Вт.

Электрические потери в цепи якоря по (29.19)

Вт.

Электрические потери в щеточном контакте по (29.20)

Вт.

Подводимая к двигателю мощность по (29.28)

Вт.

Добавочные потери

Вт.

Суммарные потери по (29.31)

Вт.

Полезная мощность двигателя

Вт.

КПД двигателя при номинальной нагрузке

.

Из выражения (29.5) получим

ЭДС якоря при частоте вращения 1000 об/мин по (25.20)

В.

Так как ток якоря прямо пропорционален моменту [см (25.24)], то при сила тока после включения останется прежней А. Из выражения тока якоря (29.2) получим

Ом.

Электрические потери в добавочном сопротивлении

Вт.

Полезная мощность двигателя при частоте вращения 1000 об/мин

Вт.

Расчет полезной мощности является приближенным, так как он не учиты­вает уменьшение механических потерь двигателя при его переходе на меньшую частоту вращения.

 

§ 29.9. Машины постоянного тока серий 4П и 2П

 

Стремительное развитие автоматизации производства привело к необходимости создания двигателей постоянного тока с широ­ким диапазоном регулирования частоты вращения (до 1: 1000) с хорошими динамическими свойствами. Этим требованиям соот­ветствуют двигатели серии 4П. Серия охватывает двигатели с вы­сотой оси вращения от 80 до 450 мм следующих модификаций.

Двигатели типа 4ПО и 4ПБ охватывают диапазон мощности от 0, 126 до 5, 5 кВт при номинальной частоте вращения от 750 до 3000 об/мин. Двигатели допускают регулирование частоты враще­ния вниз от номинальной уменьшением напряжения на обмотке якоря при снижении тока до 0, 5 . А так же вверх от номиналь­ной (уменьшением тока возбуждения) в пределах максимальной частоты вращения, которая превышает номинальную в среднем в 1, 35— 1, 8 раза.

Конструкция этих двигателей унифицирована с асинхронны­ми двигателями серии 4А. Это позволило применить для произ­водства некоторых узлов двигателей типа 4ПО и 4ПБ технологи­ческое оборудование, применяемое в производстве двигателей серии 4А. В унифицированной конструкции этих двигателей магнитопровод статора неявнополюсный с распределенными в пазах обмотками. Так, обмотка возбуждения (независимая) укладывает­ся в два паза в пределах каждого полюсного деления, остальные пазы занимает компенсационная обмотка. В двигателях типа 4ПО и 4ПБ и двигателях серии одинакового габарита могут быть применены одинаковые станины, задние подшипниковые шиты, коробки выводов, подшипники и т. п.

Применение распределенных обмоток на статоре двигателей типа 4ПО и 4ПБ улучшило процесс охлаждения и позволило уве­личить токовые нагрузки на обмотки возбуждения и компенсаци­онную. Кроме того, распределенная конструкция обмоток статора способствует лучшей компенсации реакции якоря и улучшению коммутации.

Двигатели постоянного тока типов 4ПО и 4ПБ имеют закры­тое исполнение со степенью защиты IР44 со способами охлаждения IС0141 (наружный обдув) в двигателях типа 4ПО (рис. 29.14) и IС0041 (естественное охлаждение) в двигателях типа 4ПБ.

 

Рис. 29.14. Двигатель постоянного тока типа 4IIО унифицированной конструкции;

/ — корпус; 2 — магнитопровод статора с распределенными обмотками; 3 — шит подшипниковый передний; 4 — сердечник якоря; 5 — вентилятор, 6 — ко­жух вентилятора; 7 — коробка выводов; 8 — коллектор, 9 — траверса.

 

Широкорегулируемые двигатели типа 4ПФ предназначены для привода станков с программным управлением, роботизиро­ванных производственных комплексов. Исполнение двигателей по степени защиты IР23 (защищенные), способ охлаждения IС06 (независимая вентиляция). Двигатели охватывают номинальные мощности от 2, 0 до 250 кВт при высоте оси вращения от 112 до 250 мм. Напряжение питания 220 и 440 В. Регулирование частоты вращения возможно изменением подводимого к обмотке якоря напряжения от 0 до 460 В. Допускается также регулирование частоты вращения ослаблением поля возбуждения (уменьшением тока в обмотке возбуждения).

Статор двигателей восьмигранный шихтованный, явнополюсный (рис. 29.15). Пакет статора запрессован между двумя нажимными плитами толщиной 10 мм. Подшипниковые шиты литые чугунные.

 

Рис. 29.15. Двигатель постоянного тока типа 4ПФ:

1 — траверса; 2 — вентилятор наружный; 3 — коллектор; 4 — обмоткодержатель якоря; 5 — нажимная плита статора; 6 — подшипниковый щит; 7 — обмотка ком­пенсационная; 8 — дополнительный полюс; 9 — статор; 10 — обмотка независи­мого возбуждения; 11 — балансировочное кольцо

 

Катушки возбуждения намотаны на главные полюса, катушки дополнительной обмотки надеты на добавочные полюса, компенсационная обмотка расположена в пазах полюсных наконечников.

Наружный вентилятор может быть снабжен фильтром для очистки воздуха от пыли и мелких частиц. Вентилятор располо­жен на боковой или торцевой поверхности со стороны коллектора.

Крупные двигатели 4П для тяжелых условий эксплуатации предназначены для привода крупных металлорежущих станков, механизмов металлургического производства, с частыми пусками, остановками, реверсами, набросами и неравномерностью нагруз­ки. Двигатели изготавливаются с высотой оси вращения 355 и 450 мм мощностью от 110 до 800 кВт; напряжение питания 440 и 600 В. Возбуждение независимое напряжением 220 В. Вентиляция от постороннего вентилятора. Двигатели имеют степень защиты IР44 и IР23.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2017-03-09; Просмотров: 721; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.029 с.)
Главная | Случайная страница | Обратная связь