Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Металлы подгрупп меди и цинка



Цель работы : изучить химические свойства соединений металлов подгрупп меди и цинка.

Задание: получить гидроксид меди (II), исследовать его свойства; провести рекции взаимодействия солей цинка, кадмия и ртути со щелочью; получить комплексные соединения цинка и кадмия; убедиться на опыте, что соединения ртути (II) являются окислителями. Выполнить требования к результатам опытов, оформить отчет, решить задачу.

Теоретическое введение

Медь, серебро, золото расположены в побочной подгруппе I группы, относятся к d-металлам. Электронная структура внешнего энергетического уровня атомов этих элементов выражается формулой (n-1)d10ns1. Наиболее характерные степени окисления: для меди +2, для серебра +1, для золота +3.

Медь, а особенно, серебро и золото – малоактивные металлы. В ряду напряжений эти металлы стоят после водорода, поэтому не вытесняют его из разбавленных кислот. Медь и серебро растворимы в концентрированной H2SO4 при нагревании, а также в азотной кислоте любой концентрации. Золото достаточно легко растворяется в смеси кислот.

Медь образует нерастворимые в воде оксиды: Cu2O – красного цвета и CuO – черного цвета. Гидроксиды меди CuOH и Cu(ОН)2 – нерастворимые в воде вещества соответственно желтого и голубого цвета, легко разлагаются при нагревании на оксид и воду. Cu(ОН)2 наряду с основными свойствами в слабой степени проявляет кислотные свойства; он растворяется в концентрированных растворах щелочей с образованием мало прочных купритов Na2[Cu(OH)4], K2[Cu(OH)4].

Оксид серебра получается только косвенным путем, при взаимодействии соли серебра со щелочью:

2AgNO3 + 2NaOH = Ag2O↓ + 2NaNO3 + H2O.

Большинство соединений меди, серебра и золота являются окислителями.

Цинк, кадмий и ртуть образуют побочную подгруппу II группы. Это

d-металлы. Электронная структура внешнего энергетического уровня атомов этих элементов может быть выражена формулой (n-1)d10ns2. Цинк и кадмий проявляют степень окисления +2, ртуть +1 и +2.

В подгруппе цинка наблюдается резкое падение химической активности металлов при переходе сверху вниз. В ряду напряжений цинк и кадмий стоят до водорода, а ртуть – после. Цинк – химически активный металл, легко растворяется в HCl и разбавленной H2SO4 с выделением водорода. Вследствие амфотерности его оксида он растворяется также в концентрированных растворах щелочей. Кадмий в щелочах практически не растворяется, а в кислотах – менее энергично, чем цинк. Ртуть растворима только в кислотах-окислителях – HNO3 и концентрированной H2SO4:

Hg + 2H2SO4 (конц.) = HgSO4 + SO2 + 2H2O;

Hg + 4HNO3 (конц.) = Hg(NO3)2 + 2NO2 + 2H2O.

При действии разбавленной азотной кислоты на избыток ртути образуется Hg2(NO3)2, где каждый атом ртути имеет степень окисления +1:

6Hg + 8HNO3 (разб.) = 3Hg2(NO3)2 + 2NO + 4H2O.

Во всех соединениях ртути (I) атомы ртути связаны между собой попарно, образуя двухвалентные группы –Hg–Hg−. Поэтому формулу нитрата ртути (I) следует писать Hg2(NO3)2, а не HgNO3, также Hg2Cl2, а не HgCl. Диссоциация солей ртути (I) идет с образованием ионов Hg22+. Соединения Hg22+ в зависимости от условий могут быть окислителями и восстановителями. Например, в реакции Hg2Cl2 + Cl2 = 2HgCl2 Hg2Cl2 – восстановитель,

а в реакции Hg2Cl2 + SnCl2 = 2Hg + SnCl4 Hg2Cl2 − окислитель.

Все металлы подгруппы цинка устойчивы на воздухе, так как на поверхности цинка и кадмия при обычной температуре образуется тончайшая оксидная пленка, защищающая эти металлы от дальнейшего окисления, а ртуть на воздухе при комнатной температуре не окисляется. При нагревании все металлы образуют с кислородом нерастворимые оксиды: ZnO – белого, CdO – коричневого, HgO – желтого или красного, Hg2O – черного цвета.

Гидроксиды Zn и Cd нерастворимы в воде и получаются при взаимодействии их солей с растворами щелочей. Zn(OH)2 обладает амфотерными свойствами, а Cd(OH)2, главным образом, − основными. Оба эти гидроксида легко растворяются в избытке NH4ОН с образованием комплексных аммиакатов. При взаимодействии растворов солей ртути со щелочами образуются оксиды, так как гидроксиды ртути неустойчивы и разлагаются в момент образования.

Элементы подгрупп меди и цинка проявляют склонность к комплексообразованию, координационное число их ионов равно 4.

Выполнение работы

Опыт 1. Получение и свойства гидроксида меди (II)

В четыре пробирки налить по 1–2 мл раствора соли меди (II) и во все добавить раствор щелочи до выпадения осадка. Затем прилить до растворения осадков в первую – раствор HCl, во вторую – раствор аммиака, в третью – концентрированной щелочи. Содержимое четвертой пробирки нагреть до кипения и отметить изменение окраски.

Требования к результатам опыта

1. Написать уравнение реакции получения гидроксида меди (II).

2. Составить уравнения реакций растворения гидроксида меди (II) в:

а) HCl; б) NH4OH; в) концентрированной щелочи.

3. Составить уравнение реакции, происходящей при нагревании Cu(ОН)2.

4. Сделать выводы о кислотно-основных свойствах и термической устойчивости гидроксида меди (II).

Опыт 2. Окислительные свойства соли меди (II)

Налить в пробирку 3–4 мл раствора CuSO4 и прибавить такой же объем раствора KI. Наблюдать образование белого осадка CuI. Дать осадку отстояться и испытать раствор иодкрахмальной бумажкой.

Требования к результатам опыта

1. Закончить уравнение реакции CuSO4 + KI = … и объяснить изменение окраски йодкрахмальной бумажки.

2. Сделать вывод об окислительно-восстановительных свойствах соединений меди (II).

Опыт 3. Получение оксида серебра

В пробирку налить 3–4 капли раствора AgNO3 и добавить 1–2 капли раствора щелочи. Отметить цвет образующегося осадка.

Требование к результату опыта

Составить уравнение реакции образования оксида серебра.

Опыт 4. Действие щелочи на растворы солей металлов подгруппы цинка

Налить в четыре пробирки по 1–2 мл растворов солей цинка, кадмия, ртути (I) и ртути (II). В каждую пробирку по каплям прибавить раствор щелочи до выпадения осадков. Отметить их цвет. Прилить во все пробирки избыток раствора щелочи. Какой из осадков растворяется?

Требования к результатам опыта

1. Составить уравнения реакций взаимодействия вышеперечисленных солей с раствором щелочи.

2. Написать молекулярное и ионные уравнения реакции растворения осадка в избытке щелочи.

Опыт 5. Окислительные свойства солей ртути

В пробирку налить 1–2 мл раствора нитрата ртути (II) и прибавить по каплям раствор SnCl2 до образования белого осадка хлорида ртути (I) Hg2Cl2. К осадку добавить избыток раствора SnCl2. Наблюдать постепенное образование серого осадка металлической ртути.

Требования к результатам опыта

1. Написать уравнения реакций образования Hg2Cl2 и металлической ртути.

2. Сделать вывод об окислительно-восстановительных свойствах солей ртути (II) и (I).

Опыт 6. Комплексные соединения цинка и кадмия

Налить в одну пробирку 1–2 мл раствора соли цинка, в другую 1–2 мл раствора соли кадмия. В обе пробирки добавить по каплям раствор NH4ОН до образования осадков, а затем до полного их растворения.

Требование к результатам опыта

Составить молекулярные и ионные уравнения реакций образования гидроксидов и аммиакатов цинка и кадмия.

Задачи для самостоятельного решения

19.1. Составить уравнения реакций, которые надо провести для осуществления следующих превращений:

Ag → AgNO3 → AgCl → [Ag(NH3)2]Cl → Ag2S.

19.2. Составить уравнения реакций, которые надо провести для осуществления следующих превращений:

ZnS → ZnO → Zn → ZnSO4 → Zn(OH)2 → Na2ZnO2.

19.3. Составить в молекулярном и ионном виде уравнения реакций гидролиза:

а) CuSO4 + H2O ↔ …; б) CuSO4 + Na2CO3 + H2O = …; в) CuCl2 + H2O ↔ ….

19.4. Вычислить Δ Н° реакции восстановления ZnO углем с образованием СО. ( = –350, 6 кДж/моль; = –110, 5 кДж/моль).

(Ответ: 240, 1 кДж).

19.5. Написать уравнения реакций, сопровождающихся образованием свободного металла: а) AgNO3 + H2O2 + NaOH = …; б) H[AuCl4] + H2O2 + NaOH = ….

19.6. Что происходит при действии на гидроксиды цинка и кадмия растворов: а) щелочи; б) аммиака? Написать уравнения соответствующих реакций в молекулярном и ионном виде.

19.7. Вычислить молярную концентрацию водного раствора сульфата меди

(ρ = 1, 107 г/мл), полученного при растворении 5 г соли в 45 г воды.

(Ответ: 0, 63 моль/л).

19.8. Закончить уравнения реакций: а) CuCl2 + NaOH = …;

б) CuO + HNO3 = …; в) Cu(СN)2 + КСN = …; г) CuSO4 + H2O ↔ ….

19.9. Закончить уравнения реакций: а) Zn + NaNO3 + NaOH = …;

б) Zn + K2Cr2O7 + H2SO4 = …; в) Hg + HNO3 (разб.) = …; г) Zn + H2SO4 (разб.) = ….

19.10. Составить уравнения реакций, которые надо провести для осуществления следующих превращений:

СuS → CuO → Cu → CuSO4 → Cu(OH)2 → CuO.

19.11. Можно ли восстановить медь из ее оксида водородом? Ответ мотивировать, вычислив Δ G0 реакции CuO (к) + H2 (г) = Cu (к) + H2O (г).

( = –129, 9 кДж/моль; = –228, 6 кДж/моль).

19.12. Написать уравнения реакций взаимодействия металлов с кислотами:

а) Сu + H2SO4 (конц.) = …; б) Au + H2SеO4 (конц.) = …;

в) Ag + HNO3 (разб.) = …; г) Cu + HNO3 (разб.) = ….

19.13. Кусочек латуни (сплав цинка и меди) растворили в азотной кислоте. Раствор разделили на две части: к одной части прибавили избыток аммиака, а к другой − избыток щелочи. В растворе или в осадке и в виде каких соединений находятся цинк и медь в обоих случаях? Написать уравнения соответствующих реакций.

19.14. Составить уравнения реакций, с помощью которых можно осуществить следующие превращения: HgSO4 → HgO → HgCl2 → HgS → HgO → Hg.

19.15. Чему равна молярная масса эквивалентов кадмия, если для выделения 1 г кадмия из раствора его соли надо пропустить через раствор 1717 Кл электричества? (Ответ: 56, 2 г/моль).

19.16. Закончить уравнения реакций: а) Hg2Cl2 + SnCl2 = …;

б) Cd + HNO3 (разб.) = …; в) Cd + H2SO4 (конц.) = …; г) Hg + HNO3 (разб.) = …

19.17. Составить уравнения реакций, которые надо провести для осуществления следующих превращений:

Cd → Cd(NO3)2 → Cd(OH)2 → [Cd(NH3)4](OH)2 → CdSO4.

19.18. Учитывая, что координационное число серебра равно двум, написать уравнения реакций образования комплексных соединений серебра и назвать их:

а) AgNO3 + KCN (избыток) = …; б) AgBr + Nа2S2O3 = …; в) AgCl + NH4OH = ….

19.19. Какие вещества образуются при добавлении щелочи к растворам одно- и двухвалентной азотнокислой ртути? Составить молекулярные и ионные уравнения реакций.

19.20. Составить схемы двух гальванических элементов, в одном из которых медь служила бы катодом, а в другом – анодом. Написать уравнения реакций, происходящих при работе этих элементов. Вычислить значения стандартных ЭДС.

 

Лабораторная работа 20

Хром

Цель работы: изучить химические свойства соединений хрома.

Задание: убедиться на опытах, что кислотно-основные и окислительно-восстановительные свойства соединений хрома зависят от степени его окисления. Выполнить требования к результатам опытов, оформить отчет, решить задачу.

Теоретическое введение

Хром является элементом побочной подгруппы VI группы. Это d-металл. На внешнем энергетическом уровне атома хрома содержится один электрон (3d54s1), однако соединения, в которых хром был бы одновалентен, неизвестны. Типичные степени окисления хрома +2, +3, +6, наиболее устойчивой является степень окисления +3. Соединения Cr (II) неустойчивы и быстро окисляются кислородом воздуха до соединений Cr (III).

При нагревании в мелкораздробленном состоянии хром окисляется многими неметаллами, сгорает в кислороде. Хром легко пассивируется, поэтому является исключительно химически устойчивым металлом.

Концентрированные H2SO4, HNO3 и царская водка на холоду не действуют на хром и лишь при нагревании медленно его растворяют. Однако хром реагирует с HCl и разбавленной H2SO4, вытесняя из них водород.

При прокаливании на воздухе образуется оксид хрома (III) Cr2O3 – тугоплавкое вещество зеленого цвета, не растворимое в воде. Cr2O3 – амфотерен, но малоактивен и реагирует только при сплавлении:

Cr2O3 + 2NaOH = 2NaCrO2 + H2O;

Cr2O3 + 3Na2S2O7 = Cr2(SO4)3 + 3Na2SO4.

Гидроксид хрома (III) получают реакцией обмена:

Cr2(SO4)3 + 6КОН = 2Cr(OH)3↓ + 3К2SO4.

Cr(OH)3 не растворим в воде, имеет амфотерный характер. Он растворяется в кислотах с образованием солей, в которых хром (III) выполняет функцию катиона: Cr(OH)3 + 3HCl = CrCl3 + 3H2O

и в щелочах с образованием солей, называемых хромитами, в которых хром (III) входит в состав аниона: Cr(OH)3 + 3КОН = К3[Cr(OH)6].

Соединения хрома (III) являются восстановителями и под действием окислителей переходят в соединения хрома (VI). Оксид хрома (VI) CrO3 – вещество темно-красного цвета, сильный окислитель. При растворении его в воде образуется две кислоты хромовая и дихромовая, известные только в растворах. Соли хромовой кислоты (хроматы) окрашены в желтый цвет, присущий иону CrO42− ; соли дихромовой кислоты (дихроматы) имеют оранжевую окраску, характерную для ионов Cr2O72− .

Хроматы устойчивы в нейтральной и щелочной среде, дихроматы – в кислой. При изменении реакции среды возможен переход хроматов в дихроматы и наоборот:

2CrO42− + 2H+ ↔ Н2O + Cr2O72− (оранжевая окраска);

Cr2O72− + 2OH ↔ H2O + 2CrO42− (желтая окраска).

Хроматы и дихроматы – сильные окислители. Наиболее сильно окислительные свойства проявляются в кислой среде, при этом соединения хрома (VI) восстанавливаются до соединений хрома (III).

Выполнение работы

Опыт 1. Получение оксида хрома (III) (групповой)

В фарфоровую чашку насыпать горкой небольшое количество дихромата аммония(NH4)2Cr2O7 и горящей спичкой нагреть его сверху. Наблюдать бурное разложение соли. Отметить цвет исходного вещества и продукта реакции. Проверить растворимость последнего в воде.

Требования к результатам опыта

1. Написать уравнение реакции разложения дихромата аммония и сделать вывод, к какому типу ОВР относится данная реакция.

2. Сделать вывод о растворимости в воде оксида хрома (III).

Опыт 2. Получение и свойства гидроксида хрома (III)

В две пробирки налить по 1–2 мл раствора соли хрома (III) и добавить в каждую по каплям раствор щелочи до появления серо-зеленого осадка. Для определения свойств Cr(OH)3 добавить в первую пробирку раствор HCl, а во вторую концентрированный раствор щелочи до полного растворения осадков. (Пробирку с образовавшимся хромитом сохранить для опыта 3).

Требования к результатам опыта

1. Написать уравнение реакции получения гидроксида хрома (III).

2. Составить уравнения реакций взаимодействия Cr(OH)3 с кислотой и щелочью.

3. Сделать вывод о кислотно-основных свойствах гидроксида хрома (III).

Опыт 3 . Восстановительные свойства соединений хрома (III)

В пробирку с хромитом натрия или калия, полученным в опыте 2, добавить пероксид водорода H2O2 до изменения окраски.

Требования к результатам опыта

1. Закончить уравнение реакции KCrO2 + H2O2 + KOH =….

2. Сделать вывод, какими свойствами (окислительными или восстановительными) обладают соединения хрома (III).

Опыт 4. Взаимные переходы хромата и дихромата

Налить в одну пробирку 2–3 мл раствора хромата калия K2CrO4, а в другую – столько же дихромата калия K2Cr2O7. Заметить окраску в обеих пробирках. В первую пробирку добавить 1–2 мл раствора H2SO4, во вторую 1–2 мл раствора щелочи. Наблюдать изменения окраски.

Требования к результатам опыта

1. Написать уравнения реакций перехода хромата в дихромат в кислой среде и дихромата в хромат в щелочной среде.

2. Сделать вывод о влиянии реакции среды на устойчивость хроматов и дихроматов.

Опыт 5. Окислительные свойства соединений хрома (VI)

В две пробирки налить по 1–2 мл раствора K2Cr2O7 и подкислить растворы 1 мл разбавленной H2SO4. Затем в одну пробирку прилить немного свежеприготовленного раствора сульфита натрия, во вторую – раствора нитрита калия. Как изменится окраска растворов?

Требования к результатам опыта

1. Закончить уравнения реакций:

K2Cr2O7 + Na2SO3 + H2SO4 =…;

K2Cr2O7 + KNO2 + H2SO4 =….

2. Сделать вывод, какими свойствами (окислительными или восстановительными) обладают соединения хрома (VI).

Задачи и упражнения для самостоятельного решения

20.1. Закончить уравнения реакций: а) K2Cr2O7 + KI + H2SO4 = …;

б) CrO3 + NaOH = …; в) CrCl3 + H2O ↔ …; г) Cr2O3 + H2SO4 =….

20.2. Вычислить тепловой эффект реакции получения хрома по стандартным энтальпиям образования: Cr2O3 + 2Al = Al2O3 + 2Cr.

( = –1440, 6 кДж/моль; = –1676 кДж/моль).

(Ответ: –235, 4 кДж).

20.3. Составить уравнения реакций, которые надо провести для осуществления следующих превращений:

Na2Cr2O7 → Na2CrO4 → Na2Cr2O7 → CrCl3.

20.4. Закончить уравнения реакций: а) NaCrO2 + PbO2 + NaOH = …;

б) K2Cr2O7 + FeSO4 + H2SO4 = …; в) Cr2(SO4)3 + H2O ↔ ….

20.5. Какой объем хлора при нормальных условиях выделится при взаимодействии одного моля дихромата натрия с избытком соляной кислоты?

(Ответ: 67, 2 л).

20.6. Составить уравнения реакций взаимодействия в щелочной среде хлорида хрома (III): а) с бромом (Br2); б) с пероксидом водорода (H2O2).

20.7. Составить уравнения реакций, которые надо провести для осуществления следующих превращений:

Cr2O3 → Cr2(SO4)3 → Cr(OH)3 → K3[Cr(OH)6].

20.8. Можно ли восстановить хром из его оксида алюминием? Ответ мотивировать, вычислив Δ реакции: Cr2O3 + 2Al = Al2O3 + 2Cr.

( = –1050 кДж/моль; = –1582 кДж/моль).

20.9. Составить уравнения реакций взаимодействия в щелочной среде сульфата хрома (III): а) с бромом (Br2); б) с диоксидом свинца (PbO2).

20.10. Учитывая, что координационное число хрома (III) равно 6, написать уравнения реакций образования комплексных соединений хрома и назвать их: а) CrCl3 + KCN (избыток) = …; б) Cr(OH)3 + NaOH (избыток) = …;

в) CrCl3 + NH4OH (избыток) = ….

20.11. Написать в молекулярном и ионном виде уравнения реакций гидролиза солей хрома: а) Cr2(SO4)3 + K2CO3 + H2O = …;

б) Cr(NO3)3 + H2O ↔ …; в) CrCl3 + Na2S + H2O = ….

20.12. Вычислить молярную массу эквивалентов и эквивалент восстановителя в реакции

2СrCl3 + 3Br2 + 16KOH = 2K2CrO4 + 6KBr + 6KCl + 8H2O.

20.13. При сплавлении хромита железа Fe(CrO2)2 с карбонатом натрия в присутствии кислорода хром (III) и железо (II) окисляются и приобретают степени окисления +6 и +3. Составить уравнение реакции.

20.14. Можно ли получить хром восстановлением Cr2O3 водородом с образованием водяного пара при стандартном состоянии всех веществ? Ответ обосновать, рассчитав Δ реакции

Cr2O3 + 3Н2 = 3Н2O (г) + 2Cr.

( = –1050 кДж/моль; = –228, 6 кДж/моль).

20.15. Закончить уравнения реакций: а) Na2CrO4 + H2SO4 = …;

б) Na2Cr2O7 + NaOH = …; в) Na2Cr2O7 + HCl = …; г) Cr + HCl = ….

20.16. Закончить уравнения реакций окисления соединений хрома (III):

а) Cr2O3 + NaNO3 + Na2CO3 …; б) Cr(NO3)3 + NaBiO3+ HNO3 = ….

20.17. Вычислить молярную массу эквивалентов и эквивалент окислителя в реакции

2Al + K2Cr2O7 + 7H2SO4 = Al2(SO4)3 + Cr2(SO4)3 + K2SO4 + 7H2O

20.18. Закончить уравнения реакций:

а) Cr2O3 + H2SO4 = …; б) Cr2O3 + КОН …;

в) Cr2O3 + КОН + KMnO4 = …

20.19. Предложить 4 способа получения Cr2O3 Составить соответствующие уравнения реакций.

20.20. Какая масса дихромата калия требуется для приготовления 2 л 0, 1 н. (по отношению к реакциям окисления в кислой среде) раствора K2Cr2O7?

(Ответ: 9, 8 г).

Лабораторная работа 21

Марганец

 

Цель работы: изучить химические свойства соединений марганца.

Задание: получить и исследовать кислотно-основные и окислительно-восстановительные свойства гидроксида марганца (II); провести реакцию разложения перманганата калия; выяснить, как влияет среда на характер протекания реакций с участием перманганата калия в качестве окислителя. Выполнить требования к результатам опытов, оформить отчет, решить задачу.

Теоретическое введение

Марганец является элементом побочной подгруппы VII группы. Это

d - металл. Электронная структура внешнего энергетического уровня его атома выражается формулой 3d54s2. Типичные степени окисления марганца + 2, +4, +7, менее свойственные +3, +6. Для химии марганца очень характерны окислительно-восстановительные реакции. При этом в кислой среде для марганца устойчива степень окисления + 2, в сильнощелочной +6, в нейтральной +4.

В соответствии с возможными степенями окисления марганец образует оксиды: Mn+2O, Mn2+3O3, Mn+4O2, Mn+6O3, Mn2+7O7

С повышением степени окисления марганца ослабевают основные и усиливаются кислотные свойства оксидов и гидроксидов. MnO и Mn2O3 и соответствующие им гидроксиды Mn(OH)2 и Mn(OH)3 имеют основной характер. Нерастворимый в водеMn(OH)2 на воздухе вследствие окисления кислородом постепенно переходит в бурыйMn(OH)3:

4Mn(OH)2 + O2 + 2H2O = 4Mn(OH)3

Окончательным продуктом окисления является коричневый оксид-гидроксид марганца:

4Mn(OH)3 + O2 + 2H2O = 4Mn(OH)4 = 4MnO(OH)2 + 4H2O

Соли марганца (II) и их концентрированные растворы обычно окрашены в светло-розовый цвет. Соединения марганца (II) – восстановители.

Оксид марганца (IV)MnO2 – темно-бурое нерастворимое в воде вещество, наиболее устойчивое кислородное соединение марганца при обычных условиях. Обладает слабо выраженными амфотерными свойствами. С концентрированной H2SO4 он дает крайне неустойчивую соль Mn(SO4)2, а при сплавлении со щелочами образует манганиты:

MnO2 + 2KOH = K2MnO3 + H2O.

MnO2 − сильный окислитель, при этом он восстанавливается до солей марганца (II): MnO2 + 4HCl = MnCl2 + Cl2 + 2H2O.

Действием более сильных окислителей MnO2 может быть окислен до соединений Mn (VI), Mn (VII):

2MnO2 + 4KOH + O2 = 2K2MnO4 + 2H2O.

K2MnO4 − манганат калия, соль не выделенной в свободном состоянии марганцовистой кислоты H2MnO4. Не получен и оксид Mn (VI) – MnO3. Растворы манганатов окрашены в темно-зеленый цвет, присущий ионам MnO42− . Они устойчивы только в сильнощелочной среде, при разбавлении раствора водой манганаты диспропорционируют:

3K2MnO4 + 2H2O = 2КMnO4 + MnO2 + 4KOH.

Все производные Mn (VI)являются окислителями, особенно в кислой среде. Однако при действии более сильных окислителей они превращаются в соединения марганца (VII):

K2MnO4 + Сl2 = 2КMnO4 + 2KCl.

Оксид марганца (VII) Mn2O7 – зеленовато-черная жидкость, сильный окислитель. Растворим в воде. Отвечающая ему марганцовая кислота HMnO4 известна только в растворах. Эти растворы, а также растворы ее солей (перманганаты), окрашены в фиолетово-малиновый цвет, характерный для иона (MnO4). При нагревании перманганаты разлагаются с выделением кислорода:

2КMnO4 = K2MnO4 + MnO2 + O2.

Производные Mn (VII) – сильные окислители. В кислой среде они восстанавливаются до солей марганца (II), в нейтральной, а также в слабокислой и слабощелочной – до MnO2, в сильнощелочной до манганатов, которые затем постепенно переходят в соединения Mn (IV).

Выполнение работы

Опыт 1 . Получение и свойства гидроксида марганца (II)

В две пробирки налить по 1–2 мл раствора соли марганца (II) и в каждую добавить по каплям раствор щелочи до образования осадка. Отметить его цвет. В одну из пробирок прилить раствор кислоты, другую оставить на воздухе и наблюдать изменение цвета осадка. Осадок сохранить для опыта 3.

Требования к результатам опыта

1. Составить уравнение реакции образования Mn(ОН)2.

2. Написать уравнение реакции растворения гидроксида марганца (II) в кислоте.

3. Написать уравнение реакции окисления гидроксида марганца (II) на воздухе до MnО(ОН)2

4. Сделать вывод о кислотно-основных свойствах Mn(ОН)2.

Опыт 2. Восстановительные свойства соединений марганца (II)

В пробирку налить 2–3 мл раствора азотной кислоты HNO3 (1: 1) и 2–3 капли раствора сульфата марганца MnSO4, перемешать и на кончике шпателя добавить висмутата натрия NaBiO3. По изменению окраски раствора определить образовавшееся соединение.

Требования к результатам опыта

1. Закончить уравнение реакции

MnSO4 + NaBiO3 + HNO3 = …

2. Сделать вывод, какие свойства (окислительные или восстановительные) проявляют соединения марганца (II).

Опыт 3 . Окислительные свойства соединений марганца (IV)

Приготовить 2–3 мл раствора сульфата железа (II), подкислить его 1–2 мл разбавленной H2SO4 и добавить к осадку, полученному в опыте 1. Что наблюдается?

Требования к результатам опыта

1. Составить уравнение реакции взаимодействия MnO(ОН)2 с FeSO4 в кислой среде.

2. Сделать вывод, какие свойства (окислительные или восстановительные) проявляет соединение марганца (IV) в данной реакции.

Опыт 4. Разложение перманганата калия

В сухую пробирку поместить шпатель перманганата калия и нагреть на пламени спиртовки. К отверстию пробирки поднести тлеющую лучинку. Что наблюдается? Какой газ выделяется при разложении KМnO4? Нагревание продолжить до прекращения выделения газа. Пробирку охладить и влить в нее

2–3 мл воды. По окраске образовавшегося раствора и осадка определить соединения.

Требования к результатам опыта

1. Составить уравнение реакции разложения KМnO4 при нагревании и сделать вывод, к какому типу ОВР относится данная реакция.

2. Закончить уравнение реакции K2МnO4 + Н2О = … и сделать вывод, к какому типу ОВР относится данная реакция.

Опыт 5. Окислительные свойства соединений марганца (VII)

· Налить в пробирку 1–2 мл раствора KМnO4, 0, 5–1 мл раствора H2SO4 и

2–3 мл раствора пероксида водорода Н2O2. Отметить обесцвечивание раствора и выделение газа.

· К 1–2 мл раствора сульфата марганца MnSO4 по каплям прилить раствор перманганата калия до выделения бурого осадка MnO2. При помощи универсальной индикаторной бумаги убедиться, что реакция раствора стала кислой.

Требования к результатам опыта

1. Закончить уравнения реакций: KМnO42O2 + H2SO4 = …;

MnSO4 + KМnO4 + Н2О = ….

2. Сделать вывод, какие свойства (окислительные или восстановительные) проявляют соединения марганца (VII).

Опыт 6. Влияние среды на характер восстановления перманганата калия

В три пробирки налить по 2–3 мл раствора перманганата калия и добавить: в первую – 1–2 мл раствора серной кислоты, во вторую – столько же воды, а в третью 1–2 мл концентрированной щелочи. Во все три пробирки добавить по каплям раствор нитрита калия КNO2 до исчезновения фиолетового окрашивания. По окраскам полученных растворов и осадков определить соединения марганца.

Требования к результатам опыта

1. Закончить уравнения реакций:

KМnO4 + КNO2 + H2SO4 = …;

KМnO4 + КNO2 + Н2О = …;

KМnO4 + КNO2 + КОН = ….

2. Сделать вывод о характерной степени окисления марганца в кислой, нейтральной и щелочной среде.

Задачи и упражнения для самостоятельного решения

21.1. Как получить сульфат марганца (II) из: а) оксида марганца (II);

б) металлического марганца; в) KMnO4? Составить соответствующие уравнения реакций.

21.2. Какая масса перманганата калия потребуется для окисления 7, 6 г FeSO4 в кислой среде? (Ответ: 1, 58 г).

21.3. Рассчитать молярную массу эквивалентов перманганата калия в реакции

KMnO4 + PH3 + H2SO4 = H3PO4 + ….

Какая масса H3PO4 образуется, если в реакции участвовало 17 г PH3?

(Ответ: 31, 6 г/моль; 49 г).

21.4. Под действием HNO3 манганаты диспропорционируют следующим образом: 3K2MnO4 + 4HNO3 = 2KMnO4 + MnO2 + 4KNO3 + 2H2O.

Какой объем раствора HNO3 (ρ = 1, 185 г/мл) с массовой долей 30 % необходим для получения 9, 48 г перманганата калия? (Ответ: 21, 3 мл).

21.5. Как получить соединения марганца (VI) из соединений с более высокой и с более низкой степенью окисления? Составить соответствующие уравнения реакций.

21.6. Окисление сульфата железа (II) перманганатом калия в нейтральной среде протекает по уравнению KMnO4 + FeSO4 + Н2О = FeОНSO4 + ….

Какая масса перманганата калия потребуется для окисления 7, 6 г FeSO4?

(Ответ: 2, 63 г).

21.7. Закончить уравнения реакций: а) MnO + H2SO4 = …;

б) Mn2O7 + KOH = …; в) MnSO4 + KClO3 + KOH K2MnO4 + ….

21.8. Закончить уравнения реакций, в которых соединения марганца проявляют свойства: а) окислительные Fe(OH)2 + KMnO4 + H2O = …;

б) восстановительные MnSO4 + PbO2 + HNO3 = …;

в) окислительные и восстановительные одновременно K2MnO4 + H2O = ….

21.9. Почему оксид марганца (IV) может проявлять и окислительные и восстановительные свойства? Закончить уравнения реакций:

а) MnO2 + KI + H2SO4 = …; б) MnO2 + KNO3 + KOH = ….

21.10. Как меняется степень окисления марганца при восстановлении KMnO4 в кислой, щелочной и нейтральной среде? Закончить уравнения реакций:

а) KMnO4 + К2SO3 + H2SO4 = …;

б) KMnO4 + К2SO3 + КОН = …; в) KMnO4 + К2SO3 + H2O = ….

21.11. Восстановление перманганата калия сульфатом железа (II) в кислой среде протекает по уравнению KMnO4 + FeSO4 + H2SO4 =…. На восстановление KMnO4 израсходовано 47 мл 0, 208 н. раствора FeSO4. Какая масса KMnO4 содержалось в исходном растворе? (Ответ: 0, 154 г).

21.12. Закончить уравнения реакций: а) Mn + H2SO4 (разб.) = …;

б) MnCl2 + KOH = …; в) MnCl2 + H2O ↔ …; г) Mn + HNO3 (разб.) = ….

21.13. Окисление сульфата железа (II) перманганатом калия в щелочной среде протекает по уравнению KMnO4 + FeSO4 + КОН = FeОНSO4 + ….

Какая масса перманганата калия потребуется для окисления 7, 6 г FeSO4?

(Ответ: 7, 9 г).

21.14. Можно ли восстановить марганец из его оксида алюминием? Ответ мотивировать, вычислив Δ реакции 3MnO2 + 4Al = 2Al2O3 + 3Mn.

( = –464, 8 кДж/моль; = –1582 кДж/моль).

21.15. Как можно перевести в растворимое состояние марганец? Составить соответствующие уравнения реакций.

21.16. Вычислить молярную массу эквивалентов и эквивалент окислителя в реакции NaNO2 + KMnO4 + H2SO4 = ….

21.17. По стандартным энтальпиям образования вычислить тепловой эффект реакции получения марганца 3MnO2 + 4Al = 2Al2O3 + 3Mn.

( = –519, 4 кДж/моль; = –1676 кДж/моль).

(Ответ: − 1793, 8 кДж).

21.18. Закончить уравнения реакций: а) KMnO4 + H2SO4 (конц.) = …;

б) Mn2O7 + HCl = …; в) Mn2O7 + NaOH = …; г) MnO2 + KOH = ….

21.19. За 10 мин из раствора MnSO4 ток силой 5 А выделил 0, 85 г Mn. Определить молярную массу эквивалентов марганца. (Ответ: 27, 3 г/моль).

21.20. Закончить уравнения реакций: а) K2MnO4 + Cl2 = …;

б) Mn(NO3)2 + H2O ↔ …; в) MnSO4 + H2O ↔ …; г) MnCl2 + NaOH = ….

Реакции б), в), г) написать в молекулярном и ионно-молекулярном виде.

 

Лабораторная работа 22

Железо, кобальт, никель

 

Цель работы: изучить химические свойства соединений железа, кобальта, никеля.

Задание: получить гидроксиды железа (II), кобальта (II), никеля (II) и изучить их окислительно-восстановительные свойства; убедиться на опытах, что соединения железа (II) проявляют восстановительные, а железа (III) – окислительные свойства; получить комплексные соединения никеля и кобальта. Выполнить требования к результатам опытов, оформить отчет, решить задачу.

Теоретическое введение

Железо, кобальт, никель составляют первую триаду элементов VIII группы побочной подгруппы (семейство железа), расположены в 4 периоде, относятся к d - элементам. Электронное строение 3dn4s2 (n = 6, 7, 8). Степени окисления + 2, +3 и +6 (для Fe).

В ряду напряжений Fe, Co, Ni располагаются перед водородом в той же последовательности, в какой они стоят в периодической системе элементов.

В соляной и разбавленной серной кислоте железо, кобальт, никель растворяются при комнатной температуре с выделением водорода и образованием солей М (II).


Поделиться:



Популярное:

  1. XXIII. МЕДИТАЦИИ ЗДОРОВЬЯ, ПРОСВЕТЛЕНИЯ МОЗГА, НЕРВОВ, ТЕЛА И ОРГАНОВ.
  2. Антидепрессанты. Классификация и механизм действия. Тактика назначения антидепрессантов. Показания к применению в психиатрии и соматической медицине.
  3. Аптечка первой медицинской помощи
  4. Арабоязычная философия средних веков. Философские и медицинские воззрения Ибн-Сины.
  5. Билет 2. Данте. Божественная комедия.
  6. Биологические, медицинские и химические знания
  7. В декабре 1982 г. Генеральная Ассамблея ООН официально одобрила «Принципы медицинской этики».
  8. В каких первоисточниках зафиксированы сведения о медицине Древней Месопотамии?
  9. В каких случаях органы прокуратуры могут проверять медицинские организации?
  10. В медицинской практике с целью прогревания конечностей при их отморожении действуют токами ультравысокой частоты (УВЧ). Известно, что при этом не наблюдается сокращения мышц.
  11. ВЕЛИЧАЙШАЯ РАДОСТЬ В ЖИЗНИ, ЧТО ТАКОЕ МЕДИТАЦИЯ?
  12. Велкие открытия Нового времени ,как основа естественнонаучного развития медицины.


Последнее изменение этой страницы: 2017-03-09; Просмотров: 797; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.18 с.)
Главная | Случайная страница | Обратная связь