Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Глава 4. Физиология микроорганизмов



Физиология изучает жизненные функции микроорганизмов: питание, дыхание, рост и размножение. В основе физиологических функций лежит непрерывный обмен веществ (метаболизм).

Сущность обмена веществ составляют два противоположных и вместе с тем взаимосвязанных процесса: ассимиляция (анаболизм) и диссимиляция (катаболизм).

В процессе ассимиляции происходит усвоение питательных веществ и использование их для синтеза клеточных структур. При процессах диссимиляции питательные вещества разлагаются и окисляются, при этом выделяется энергия, необходимая для жизни микробной клетки. В результате распада питательных веществ происходит расщепление сложных органических соединений на более простые, низкомолекулярные. Часть из них выводится из клетки, а другие снова используются клеткой для биосинтетических реакций и включаются в процессы ассимиляции. Все процессы синтеза и распада питательных веществ совершаются с участием ферментов.

Особенностью микроорганизмов является интенсивный обмен веществ. За сутки при благоприятных условиях одна микробная клетка может переработать такое количество питательных веществ, которое в 30-40 раз больше ее массы.

Химический состав бактерий

Для понимания процессов обмена веществ необходимо знать химический состав микроорганизмов. Микроорганизмы содержат те же химические вещества, что и клетки всех живых организмов.

Важнейшими элементами являются органогены (углерод, водород, кислород, азот), которые используются для построения сложных органических веществ: белков, углеводов и липидов. Микроорганизмы содержат также зольные или минеральные элементы. Большая часть их химически связана с органическими веществами, остальные присутствуют в клетке в виде солей.

В количественном отношении самым значительным компонентом клетки является вода, которая составляет 75-85%; на долю сухого вещества, которое состоит из органических (белки, нуклеиновые кислоты, углеводы, липиды) и минеральных соединений, приходится 15-25%.

Вода. Значение воды в жизнедеятельности клетки велико. Все вещества поступают в клетку с водой, с ней же удаляются продукты обмена. Вода в микробной клетке находится в свободном состоянии как самостоятельное соединение, но большая часть ее связана с различными химическими компонентами клетки (белками, углеводами, липидами) и входит в состав клеточных структур.

Свободная вода принимает участие в химических реакциях, протекающих в клетке, является растворителем различных химических соединений, а также служит дисперсной средой для коллоидов. Содержание свободной воды в клетке может изменяться в зависимости от условий внешней среды, физиологического состояния клетки, ее возраста. Так, у споровых форм бактерий значительно меньше воды, чем у вегетативных клеток. Наибольшее количество воды отмечается у капсульных бактерий.

Белки (50-80% сухого вещества) определяют важнейшие биологические свойства микроорганизмов. Это простые белки - протеины и сложные - протеиды. Большое значение в жизнедеятельности клетки имеют нуклеопротеиды - соединение белка с нуклеиновыми кислотами (ДНК и РНК). Кроме нуклеопротеидов, в микробной клетке содержатся в незначительных количествах липопротеиды, гликопротеиды, хромопротеиды.

Белки распределены в цитоплазме, нуклеоиде, они входят в состав структуры клеточной стенки. К белкам принадлежат ферменты, многие токсины (яды микроорганизмов).

Видовая специфичность микроорганизмов зависит от количественного и качественного состава белковых веществ.

Нуклеиновые кислоты в микробной клетке выполняют те же функции, что и в клетках животного происхождения. ДНК содержится в ядре (нуклеоиде) и обусловливает генетические свойства микроорганизмов. РНК принимает участие в биосинтезе клеточных белков, содержится в ядре и цитоплазме. Общее количество нуклеиновых кислот колеблется от 10 до 30% сухого вещества микробной клетки и зависит от ее вида и возраста.

Углеводы (12-18% сухого вещества) используются микробной клеткой в качестве источника энергии и углерода. Из них состоят многие структурные компоненты клетки (клеточная оболочка, капсула и другие). Углеводы входят также в состав тейхоевой кислоты, характерной для грамположительных бактерий.

Клетки микроорганизмов содержат простые (моно- и дисахариды) и высокомолекулярные (полисахариды) углеводы. У ряда бактерий могут быть включения, по химическому составу напоминающие гликоген и крахмал, они играют роль запасных питательных веществ в клетке. Углеводный состав различен у разных видов микроорганизмов и зависит от их возраста и условий развития.

Липиды (0, 2-40% сухого вещества) являются необходимыми компонентами цитоплазматической мембраны и клеточной стенки, они участвуют в энергетическом обмене. В некоторых микробных клетках липиды выполняют роль запасных веществ.

Липиды состоят в основном из нейтральных жиров, жирных кислот, фосфолипидов. Общее количество их зависит от возраста и вида микроорганизма. Например, у микобактерий туберкулеза количество липидов достигает 40%, что обусловливает устойчивость этих бактерий к воздействию факторов внешней среды.

В клетках микроорганизмов липиды могут быть связаны с углеводами и белками, составляя сложный комплекс, определяющий токсические свойства микроорганизмов.

Минеральные вещества - фосфор, натрий, калий, магний, сера, железо, хлор и другие - в среднем составляют 2-14% сухого вещества.

Фосфор входит в состав нуклеиновых кислот, фосфолипидов, многих ферментов, а также АТФ (аденозинтрифосфорной кислоты), которая является аккумулятором энергии в клетке. Натрий участвует в поддержании осмотического давления в клетке. Железо содержится в дыхательных ферментах. Магний входит в состав рибонуклеата магния, который локализован на поверхности грамположительных бактерий.

Для развития микроорганизмов необходимы микроэлементы, содержащиеся в клетке в очень малых количествах. К ним относят кобальт, марганец, медь, хром, цинк, молибден и многие другие. Микроэлементы участвуют в синтезе некоторых ферментов и активируют их. Соотношение отдельных химических элементов в микробной клетке может колебаться в зависимости от вида микроорганизма, состава питательной среды, характера обмена и условий существования во внешней среде.

Питание бактерий

Всем микроорганизмам для осуществления процессов питания, дыхания, размножения необходимы питательные вещества.

В качестве питательных веществ и источников энергии микроорганизмы используют различные органические и неорганические соединения, для нормальной жизнедеятельности им требуются также микроэлементы и факторы роста.

Процесс питания микроорганизмов имеет ряд особенностей: во-первых, поступление питательных веществ происходит через всю поверхность клетки; во-вторых, микробная клетка обладает исключительной быстротой метаболических реакций; в-третьих, микроорганизмы способны довольно быстро адаптироваться к изменяющимся условиям среды обитания.

Разнообразие условий существования микроорганизмов обусловливает различные типы питания. Типы питания определяются по характеру усвоения углерода и азота. Источником других органогенов - водорода и кислорода служит вода. Вода необходима микроорганизмам и для растворения питательных веществ, так как они могут проникать в клетку только в растворенном виде.

По усвоению углерода микроорганизмы делят на два типа: автотрофы и гетеротрофы.

Автотрофы (от греч. autos - сам, trophe - питание) способны синтезировать сложные органические вещества из простых неорганических соединений. Они могут использовать в качестве источника углерода углекислоту и другие неорганические соединения углерода. Автотрофами являются многие почвенные бактерии (нитрифицирующие, серобактерии и др.).

Гетеротрофы (от греч. heteros - другой, trophe - питание) для своего роста и развития нуждаются в готовых органических соединениях. Они могут усваивать углерод из углеводов (чаще всего глюкозы), многоатомных спиртов, органических кислот, аминокислот и других органических веществ.

Гетеротрофы представляют обширную группу микроорганизмов, среди которых различают сапрофитов и паразитов.

Сапрофиты (от греч. sapros - гнилой, phyton - растение) получают готовые органические соединения от отмерших организмов. Они играют важную роль в разложении мертвых органических остатков, например бактерии гниения и др.

Паразиты (от греч. parasites - нахлебник) живут и размножаются за счет органических веществ живой клетки растений, животных или человека. К таким микроорганизмам относятся риккетсии, вирусы и некоторые простейшие (см. главу 11).

По способности усваивать азот микроорганизмы делятся также на две группы: аминоавтотрофы и аминогетеротрофы. Аминоавтотрофы для синтеза белка клетки используют молекулярный азот воздуха (клубеньковые бактерии, азотобактер) или усваивают его из аммонийных солей. Аминогетеротрофы получают азот из органических соединений - аминокислот, сложных белков. К ним относят все патогенные микроорганизмы и большинство сапрофитов.

По источникам энергии среди микроорганизмов различают фототрофы, использующие для биосинтетических реакций энергию солнечного света (пурпурные серобактерии) и хемотрофы, которые получают энергию за счет окисления неорганических веществ (нитрифицирующие бактерии и др.) и органических соединений (большинство бактерий, в том числе и патогенные для человека виды).

Однако резкой границы между типами питания микробов провести нельзя, так как есть такие виды микроорганизмов, которые могут переходить от гетеротрофного типа питания к автотрофному, и наоборот.

В настоящее время для характеристики типов питания введена новая терминология: гетеротрофы называют органотрофами, а автотрофы - литотрофами (от греч. litos - камень), так как подобные микроорганизмы способны расти в чисто минеральной среде.

Факторы роста. Микроорганизмы для своего роста и размножения нуждаются в особых веществах, которые сами синтезировать не могут и должны получать их в готовом виде. Эти вещества называют факторами роста, и нужны они микробным клеткам в небольших количествах. К ним относят различные витамины, некоторые аминокислоты (необходимые для синтеза белка), пуриновые и пиримидиновые основания (идущие на построение нуклеиновых кислот) и др. Многие факторы роста входят в состав различных ферментов и играют роль катализаторов в биохимических процессах.

Знание потребностей микроорганизмов в питательных веществах и факторах роста очень важно, в частности, для создания питательных сред, применяемых для их выращивания.

Транспорт питательных веществ. Питательные вещества могут проникать в цитоплазму микробных клеток только в виде небольших молекул и в растворенном виде.

Сложные органические вещества (белки, полисахариды и др.) предварительно подвергаются воздействию ферментов, выделяемых микробной клеткой, и после этого становятся доступными для использования. Транспорт питательных веществ в клетку и выход из нее продуктов метаболизма осуществляется в основном через цитоплазматическую мембрану.

Питательные вещества проникают в клетку несколькими способами:

1. Пассивная диффузия, т. е. перемещение веществ через толщу мембраны, в результате чего выравниваются концентрация веществ и осмотическое давление по обе стороны оболочки. Таким путем могут проникать питательные вещества, когда концентрация в среде значительно превышает концентрацию веществ в клетке.

2. Облегченная диффузия - проникновение питательных веществ в клетку с помощью активного переноса их особыми молекулами-переносчиками, называемыми пермеазами. Это вещества ферментной природы, которые локализованы на цитоплазматической мембране и обладают специфичностью. Каждая пермеаза адсорбирует соответствующее питательное вещество на наружной стороне цитоплазматической мембраны, вступает с ним во временную связь и диффундирует комплексно через мембрану, отдавая на внутренней стороне ее транспортируемое вещество в цитоплазму. Этот процесс совершается без использования энергии, так как перемещение веществ происходит от более высокой концентрации к более низкой.

3. Активный транспорт питательных веществ осуществляется также с помощью пермеаз, но этот процесс требует затраты энергии. В этом случае питательное вещество может проникнуть в клетку, если концентрация его в клетке значительно превышает концентрацию в среде.

4. В ряде случаев транспортируемое вещество может подвергаться химической модификации, и такой способ переноса веществ получил название переноса радикалов или транслокации химических групп. По механизму передачи транспортируемого вещества этот процесс сходен с активным транспортом.

Выход веществ из микробной клетки осуществляется или в виде пассивной диффузии, или в процессе облегченной диффузии с участием пермеаз.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2017-03-10; Просмотров: 1034; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.021 с.)
Главная | Случайная страница | Обратная связь