Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Современное состояние теории гравитациии ее роль в физике



 

В физике XX в. ОТО сыграла особую и своеобразную роль.

Во-первых, она представляет собой новую теорию тяготения, хотя, возможно, и не вполне завершена и не лишена некоторых недо­статков. Трудность состоит в том, что гравитация — это вид энергии, и поэтому она сама является собственным источником энергии; гра­витация как физическое поле сама обладает (как, например, и электромагнетизм) энергией и импульсом, а значит, и массой. Следо­вательно, уравнения теории нелинейны, т.е. нельзя просто сложить известные решения для простых систем, чтобы получилось полное решение для сложной системы. С этим связаны, например, трудности в интерпретации содержания тензора энергии — импульса. Матема­тический аппарат теории настолько сложен, что почти все задачи, кроме самых простейших, оказываются неразрешимыми. Из-за таких трудностей (возможно, они скорее технического характера, но может быть и принципиального) ученые до сих пор — спустя 80 лет после того, как ОТО была сформулирована, — все еще пытаются разобраться в ее смысле.

Поэтому вполне закономерно, что и в XX в. физики продолжали попытки создания альтернативных теорий тяготения. Их создано уже более 20 (Т.Калуца, Г.Вейль, Э.Картан и др.).Некоторые из них, как и теория Эйнштейна, исходят из геометрического толкования гравитации, а другие — из понятия поля, заданного в плоском про­странстве-времени, третьи рассматривают «гравитационную посто­янную» как функцию, зависящую от времени. Почти все эти альтер­нативные теории не предсказывают новых экспериментов и потому их эвристическое значение практически равно нулю. Кроме того, ни одна из них не обладает такой эстетической привлекательностью, красотой и изяществом, как теория Эйнштейна. Физики давно при­знали, что ОТО дает наилучшее из известных описание пространства-времени и гравитации.

В о - в т о р ы х, на основе ОТО были развиты два фундаментальных направления современной физики: геометризированные еди­ные теории поля; релятивистская космология (см. 11.6).

Успешная геометризация гравитации заставила многих физиков задуматься над вопросом о сущности физики в ее отношении с гео­метрией. Здесь сложились две противоположные точки зрения:

1) поля и частицы непосредственно не определяют характер про­странственно-временного континуума. Он сам служит лишь ареной их проявления. Поля и частицы чужды геометрии мира и их надо добавить к геометрии, чтобы вообще можно было говорить о какой-либо физике;

2) в мире нет ничего, кроме пустого искривленного простран­ства. Материя, заряд, электромагнетизм и другие поля являются лишь проявлением искривленного пространства. Физика есть гео­метрия.

ОТО оказалась переходной теорией между первым и вторым подходами. В ОТО представлен смешанный тип описания реальности: гравитация в ней геометризирована, а частицы и поля, отличные от гравитации, добавляются к геометрии.

Многие ученые (в том числе и сам Эйнштейн) предпринимали попытки объединить электромагнитное и гравитационное поля в рамках достаточно общего геометрического формализма на базе ОТО. С открытием разнообразных элементарных частиц и соответствующих им полей естественно встала проблема включения и их в рамки подобной единой теории. Это положило начало длительному процессу поисков геометризированной единой теории поля, кото­рая, по замыслу, должна реализовать второй подход — сведение фи­зики к геометрии, создание геометродинамики.

Важным результатом на этом пути явилось включение в физику структур современной алгебраической топологии. В геометродинамике доказано, что флуктуации гравитационного поля могут измерять топологический характер пространства. Особенно перспектив­ны протяженности с переменной топологией — так называемые топосы. Основные трудности на этом пути связаны с решением пробле­мы эмпирической интерпретации топологии на очень больших и очень малых расстояниях.

Анализ показывает, что там, где проявляются изменения тополоческой структуры мира, топологии пространственно-временного континуума, там фиксируется кажущееся изменение фундаментальных законов природы. Так, происходит кажущееся нарушение при­чинности, когда при падении в «черную дыру» исчезают элементарные частицы. В связи с изменениями топологии теряет свой одно­значный смысл понятие расстояния (загадочная неоднозначность расстояний до квазаров — их движение относительно друг друга про­исходит со скоростями, которые чуть ли не в 25 раз (! ) превышают скорость света). С вариациями топологических структур, возможно, связаны и квантовые процессы.

 

Возникновение и развитие квантовой физики

 

Гипотеза квантов

 

Истоки квантовой физики можно найти в исследованиях процессов излучения тел. Еще в 1809 г. П. Прево сделал вывод, что каждое тело излучает независимо от окружающей среды. Развитие спектроско­пии в XIX в. привело к тому, что при изучении спектров излучения начинают обращать внимание и на спектры поглощения. При этом выясняется, что между излучением и поглощением тела существует простая связь: в спектрах поглощения отсутствуют или ослабляются те участки спектра, которые испускаются данным телом. Этот закон получил объяснение только в квантовой теории.

Г. Кирхгоф в 1860 г. сформулировал новый закон, который гласит, что для излучения одной и той же длины волны при одной и той же температуре отношение испускательной и поглощательной способ­ностей для всех тел одинаково. Другими словами, если Еλ Т и Аλ Т — соответственно испускательная и поглощательная способности тела, зависящие от длины волны λ и температуры Т- то

где φ (λ, Т) — некоторая универсальная функция λ и Т, одинаковая для всех тел.

Кирхгоф ввел понятие абсолютно черного тела как тела, поглоща­ющего все падающие на него лучи. Для такого тела, очевидно, Аλ Т = 1; тогда универсальная функция φ (λ, Т) равна испускательной способ­ности абсолютно черного тела. Сам Кирхгоф не определил вид функ­ции φ (λ, Т), а лишь отметил некоторые ее свойства.

При определении вида универсальной функции φ (λ, Т) естествен­но было предположить, что можно воспользоваться теоретическими соображениями, прежде всего основными законами термодинамики. Л. Больцман показал, что полная энергия излучения абсолютно чер­ного тела пропорциональна четвертой степени его температуры. Од­нако задача конкретного определения вида функции Кирхгофа ока­залась весьма трудной, и исследования в этом направлении, основан­ные на термодинамике и оптике, не привели к успеху.

Опыт давал картину, не объяснимую с точки зрения классических представлений: при термодинамическом равновесии между колеблю­щимися атомами вещества и электромагнитным излучением почти вся энергия сосредоточена в колеблющихся атомах и лишь ничтож­ная часть ее приходится на долю излучения, тогда как согласно клас­сической теории практически вся энергия должна была бы перейти к электромагнитному полю.

В 80-е гг. XIX в. эмпирические исследования закономерностей распределения спектральных линий и изучение функции φ (λ, Т) стали более интенсивными и систематическими. Была усовершенст­вована экспериментальная аппаратура. Для энергии излучения абсолютно черного тела В. Вином в 1896 г., Дж. Рэлеем и Дж. Джинсом в 1900 г. были предложены две различные формулы. Как показали экспериментальные результаты, формула Вина асимптотически верна в области коротких волн и дает резкие расхождения с опытом в области длинных волн, а формула Рэлея — Джинса асимптотически верна для длинных волн, но не применима для коротких.

В 1900 г. на заседании Берлинского физического общества М. Планк предложил новую формулу для распределения энергии в спектре серного тела. Эта формула давала полное соответствие с опытом, но ее физический смысл был не вполне понятен. Дополнительный анализ показал, что она имеет смысл только в том случае, если опустить, что излучение энергии происходит не непрерывно, а пределенными порциями — квантами (ε ). Более того, ε не является любой величиной, а именно, ε = , где h — определенная константа, a v — частота света. Это вело к признанию наравне с атомизмом вещества атомизма энергии или действия, дискретного, квантового характера излучения, что не укладывалось в рамки пред­ставлений классической физики.

Формулировка гипотезы квантов энергии была началом новой эры в развитии теоретической физики. С большим успехом эту гипотезу начали применять для объяснения других явлений, которые не поддава­ясь описанию на основе представлений классической физики.

Существенно новым шагом в развитии квантовой гипотезы было ведение понятия квантов света. Эта идея была разработана в 1905 г. Эйнштейном и использована им для объяснения фотоэффекта. В целом ряде исследований были получены подтверждения истинности этой идеи. В 1909 г. Эйнштейн, продолжая исследования законов излучения, показывает, что свет обладает одновременно и волновыми, и корпускулярными свойствами. Становилось все более очевидно, что корпускулярно-волновой дуализм светового излучения нельзя объяснить с позиций классической физики. В 1912 г. А. Пуан­каре окончательно доказал несовместимость формулы Планка и клас­сической механики. Требовались новые понятия, новые представле­ния и новый научный язык, для того чтобы физики могли осмыслить эти необычные явления. Все это появилось позже — вместе с создани­ем и развитием квантовой механики.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2017-03-11; Просмотров: 370; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.017 с.)
Главная | Случайная страница | Обратная связь