Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ОТРАВЛЯЮЩИЕ И ВЫСОКОТОКСИЧНЫЕ ВЕЩЕСТВА ЦИТОТОКСИЧЕСКОГО ДЕЙСТВИЯ



Цитотоксическим называется повреждающее действие веществ на организм путем формирования глубоких структурных и функциональных изменений в клетках, приводящих к их гибели. В основе такого действия лежит прямое, или опосредованное иными механизмами, поражение внутриклеточных структур, сопровождающееся грубыми нарушениями генетического аппарата клеток и клеточных мембран, процессов синтеза белка и других видов пластического обмена.

Следует отметить, что практически любая тяжелая интоксикация в той или иной степени сопряжена с повреждением клеток различных типов. Однако часто повреждение носит вторичный характер (в результате стойкого нарушения токсикантами или продуктами их метаболизма гемодинамики, газообмена, кислотно-основного состояния, ионного состава внутренней среды организма и т.д.), либо проявляется при воздействии химических соединений на клетку лишь в очень высоких дозах (на фоне уже развившихся иных признаков поражения). Вместе с тем существуют вещества, цитотоксическое действие которых, обусловлено прямой атакой ксенобиотика на структурные элементы клетки и является основным в профиле вызываемого ими токсического процесса. Такие вещества можно отнести к группе цитотоксикантов.

Классификация цитотоксикантов по химическому строению:

1. Металлы:

- мышьяк

- ртуть и др.

2. Элементорганические соединения:

- сероорганические соединения (галогенированные тиоэфиры: сернистый иприт)

- азоторганичесике соединения (галогенированные алифатические амины и некоторые аминосоединения жирного ряда: азотистый иприт, этиленимин)

- мышьякорганические соединения (галогенированные алифатические арсины: люизит)

- органические окиси и перекиси (этиленоксид) и др.

3. Галогенированные полициклические ароматические углеводороды

- галогенированные диоксины

- галогенированные бензофураны

- галогенированные бифенилы и др.

4. Сложные гетероциклические соединения

- афлатоксины

- трихотеценовые микотоксины

- аманитин м др.

5. Белковые токсины

- рицин и др.

Для токсикологии особый интерес представляют вещества, способные при экстремальных ситуациях вызывать массовые санитарные потери. К числу таковых, из группы цитотоксикантов, прежде всего, относятся - боевые отравляющие вещества кожно-нарывного действия (иприт, азотистый иприт, люизит), некоторые промышленные агенты (соединения мышьяка, ртути и т.д.), фитотоксиканты и пестициды, и их токсичные примеси (диоксин и диоксиноподобные соединения), а также некоторые другие соединения.

Общим в действии ОВТВ этой группы на организм является:

- медленное, постепенное развития острой интоксикации (продолжительный скрытый период, постепенное развитие токсического процесса);

- изменения со стороны всех органов и тканей (как на месте аппликации, так и после резорбции), с которыми токсикант или продукты его метаболизма в силу особенностей токсикокинетики способны непосредственно взаимодействовать;

- основные формы нарушений со стороны органов и систем, вовлеченных в токсический процесс: воспалительно-некротические изменения, угнетение процессов клеточного деления, глубокие функциональные расстройства внутренних органов.

Вместе с тем поражения различными токсикантами имеют и свою специфику, обусловленную особенностями основного механизма их токсического действия.

Классификация цитотоксикантов по механизму действия:

1. Ингибиторы синтеза белка и клеточного деление

а) Образующие аддукты нуклеиновых кислот - сернистый иприт, азотистый иприт

б) Не образующие аддукты нуклеиновых кислот - рицин

2. Тиоловые яды - мышьяк, люизит

3. Токсичные модификаторы пластического обмена - галогенированные диоксины, бифенилы

 

Ингибиторы синтеза белка и клеточного деления

Процессы синтеза белка и клеточного деления необыкновенно сложны. Механизмы, посредством которых токсиканты способны воздействовать на них - многообразны (см. раздел “Общая токсикология. Общие механизмы цитотоксичности”). При этом условно вещества, нарушающие процессы, можно подразделить на две группы. Представители первой группы взаимодействуют с нуклеиновыми кислотами ядра клетки (образуют аддукты), повреждая ее генетический код и нарушая механизмы репликации. Поражение такими веществами сопровождается повреждением преимущественно делящихся клеток, нарушением пролиферации клеточных элементов. Соединения другой группы действуют на этапах транскрипции и трансляции генетической информации. Поэтому основным видом нарушения является угнетение синтеза белка. Наиболее чувствительными к этим ядам являются органы с высокой интенсивностью пластического обмена.

а) Ингибиторы синтеза белка и клеточного деления, образующие аддукты ДНК и РНК

К числу веществ рассматриваемой группы относятся яды, образующие при интоксикациях прочные ковалентные связи с азотистыми основаниями нуклеиновых кислот. Среди ОВТВ это, прежде всего, сернистый и азотистый иприты и их аналоги. При изучении нуклеиновых кислот, выделяемых из поврежденных этими токсикантами клеток, в пробах выявляются комплексы остатка молекулы токсиканта и пуриновых (пиримидиновых) оснований. Такие комплексы получили название аддуктов. При взаимодействии с нуклеиновыми кислотами ипритов (сернистого, азотистого) и их аналогов, образуются аддукты, содержащие алкильные радикалы (фрагменты молекулы яда, представляющие собой алкильную группу). По этой причине вещества называют также алкилирующими агентами. Помимо нуклеиновых кислот алкилирующие агенты способны взаимодействовать с белками, пептидами и молекулами иного строения. В этой связи механизм их токсического действия сложен и не ограничиваются повреждением только генетического аппарата клеток.

 

Иприты

В ходе 1-й Мировой войны, в июле 1917 г. возле города Ипр английские войска были обстреляны немецкими минами, содержащими 2, 2-дихлордиэтилсульфид. ОВ, названное “ипритом”, заражало местность, быстро проникало через одежду, вызывало поражение кожи. Так в историю войны вошел еще один тип отравляющих веществ, получивших название ОВ “кожно-нарывного действия”. Позже ОВ использовали итальянцы в ходе итало-абиссинской войны (1936 г.).

В соответствии с Конвенцией о запрещении химического оружия (1993) запасы сернистого и азотистого иприта, странами, имеющими вещества на снабжении армий, должны быть уничтожены. Однако опасность поражения людей этими соединениями или их аналогами сохраняется. Так, на основе хлорэтиламинов созданы высокоэффективные цитостатики - лекарственные препараты, применяемые для лечения опухолей (циклофосфамид, мехлорэтамин, хлорамбуцил, мелфалан) и других форм патологии.

Физико-химические свойства. Токсичность

Сернистый иприт – тяжелая маслянистая жидкость. В чистом виде бесцветная, почти без запаха. В неочищенном виде – темного цвета (в качестве примесей содержит 17-18% сульфидов). При низких концентрациях обладает запахом, напоминающим запах горчицы или чеснока (отсюда еще одно название ОВ - “горчичный газ”). В воде плохо растворим. Хорошо растворяется в органических растворителях. Растворяется в других ОВ и сам растворяет их. Легко впитывается в пористые материалы, резину, не теряя при этом токсичности.

Азотистый иприт - маслянистая, слегка темная, или бесцветная жидкость, легко растворяемая в органических растворителях, но практически не растворяющаяся в воде.

Давление насыщенного пара ипритов – незначительное; возрастает с увеличением температуры. Поэтому в обычных условиях иприты испаряются медленно, создавая при заражении местности стойкий очаг. Основное боевое состояние сернистого иприта – пары и капли.

Связь алкильных радикалов с атомами хлора в молекулах токсикантов может быть разрушена путем гидролиза. Конечными продуктами гидролиза являются нетоксичные соединения, поэтому реакция может быть использована для дегазации зараженных объектов. Гидролизу подвергается только растворившееся количество сернистого и азотистого ипритов. Поскольку растворимость токсикантов крайне низка, находящиеся в воде ОВ, долго сохраняет свою токсичность. Полный гидролиз возможен лишь в условиях очень большого избытка воды (1 г сернистого иприта на 2000 г воды). Процесс гидролиза можно ускорить нагреванием зараженной воды и добавлением разбавленных щелочей.

В организме вещества также подвергаются дегалогенированию. При этом возможно образование промежуточных продуктов (сульфоний-катиона и аммоний-катиона) с действием которых на молекулы-мишени связывают механизм токсического действия ипритов.

Сернистый иприт подвергается окислению, при этом последовательно образуются токсичные 2, 2-дихлордиэтилсульфоксид и 2, 2-дихлордиэтилсульфон.

Только глубокое окисление приводит к потере токсических свойств и полному разрушению молекулы иприта с образованием серной кислоты, хлористого водорода, диоксида углерода и воды.

При хлорировании ипритов в водной и безводной среде их молекулы разрушаются, что сопровождается потерей токсических свойств.

Токсикокинетика

Иприты способны проникать в организм, вызывая при этом поражение, любым путем: ингаляционно (в форме паров и аэрозоля), через неповрежденную кожу, раневую и ожоговую поверхности (в капельно-жидкой форме) и через рот с зараженной водой и продовольствием. Контакт с веществами не сопровождается неприятными ощущениями (немой контакт).

После поступления в кровь вещества быстро распределяются в организме, легко преодолевая гистогематические барьеры, проникают в клетки. Метаболизм веществ проходит с большой скоростью. Метаболизм веществ осуществляется при участии тканевых микросомальных ферментов. Поскольку в процессе метаболизма ипритов образуются токсичные промежуточные продукты (сульфоний, аммоний катионы и др.) индукция микросомальных ферментов, вызываемая в эксперименте путем назначения специальных средств (производные барбитуровой кислоты и др.), сопровождается усилением их токсичности.


Поделиться:



Популярное:

  1. I. Сила толерантного взаимодействия
  2. III. ЗАЩИТНЫЕ ДЕЙСТВИЯ Я, РАССМАТРИВАЕМЫЕ КАК ОБЪЕКТ АНАЛИЗА
  3. M. МЕХАНИЗМ ДЕЙСТВИЯ ЖЕВАТЕЛЬНОЙ РЕЗИНКИ
  4. VIII. Какую массу бихромата калия надо взять для приготовления 2 л 0,02 н. раствора, если он предназначен для изучения окислительных свойств этого вещества в кислой среде.
  5. А.3. Действия отдыхающего проводника соседнего с горящим вагона
  6. Агрегатные состояния вещества
  7. Анатомия социального действия
  8. Антивитамины – вещества, тормозящие действие витаминов; часто близкие по строению к соответствующим витаминам; антивитамин – разновидность антиметаболитов.
  9. Антидепрессанты. Классификация и механизм действия. Тактика назначения антидепрессантов. Показания к применению в психиатрии и соматической медицине.
  10. Антропогенные воздействия на леса и другие растительные сообщества
  11. Антропогенные воздействия на почву
  12. Антропогенные воздействия на почвы.


Последнее изменение этой страницы: 2017-03-11; Просмотров: 1340; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.015 с.)
Главная | Случайная страница | Обратная связь