Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Лекция. Вибрация и пляска проводов ВЛ
Содержание лекции: возникновение вибрации и пляски проводов в процессе эксплуатации ВЛ. Цель лекции: изучение методов и средств борьбы с вибрацией и пляской проводов.
При обтекании проводов потоком воздуха, направленным поперек оси линии или под некоторым углом к этой оси, с подветренной стороны провода возникают завихрения. Периодически происходят отрывы ветра от провода и образование вихрей противоположного направления.
Рисунок 4.1 - Образование вихря за проводом
Отрыв вихря в нижней части (см. рисунок 4.1) вызывает появление кругового потока с подветренной стороны, причем скорость потока V в точке А становится больше, чем в точке В. В результате появляется вертикальная составляющая давления ветра. При совпадении частоты образования вихрей с одной из частот собственных колебании натянутого провода последний начинает колебаться в вертикальной плоскости. При этом одни точки больше всего отклоняются от положения равновесия, образуя пучность волны, а другие — остаются на месте, образуя так называемые узлы (см. рисунок 4.2). В узлах происходят только угловые перемещения провода. Такие колебания провода с амплитудой, не превышающей 0, 005 длины полуволны или двух диаметров провода, называются вибрацией. Вибрация проводов возникает при скоростях ветра 0, 6 - 0, 8 м/с; при увеличении скорости ветра увеличиваются частота вибрации и число волн в пролете; при скорости ветра свыше 5—8 м/с амплитуды вибрации настолько малы, что не опасны для провода. Опыт эксплуатации показывает, что вибрация проводов наблюдается чаще всего на линиях, проходящих по открытой и ровной местности. На участках линий в лесной и пересеченной местности продолжительность и интенсивность вибраций значительно меньше. Вибрация проводов наблюдается, как правило, в пролетах длиной более 120 м и усиливается с увеличением пролетов. Особенно опасна вибрация на переходах через реки и водные пространства с пролетами длиной более 500 м. Опасность вибрации заключается в обрывах отдельных проволок на участках их выхода из зажимов. Эти обрывы происходят вследствие того, что переменные напряжения от периодических изгибов проволок в результате вибрации накладываются на основные растягивающие напряжения в подвешенном проводе. Если последние напряжения невелики, то суммарные напряжения не достигают предела, при котором происходит разрушение проволок от усталости. Рисунок 4.2 - Волны вибрации на проводе в пролете
На основании наблюдений и исследований установлено, что опасность разрушения проводов зависит от так называемого средне-эксплуатационного напряжения (напряжения при среднегодовой температуре и отсутствии дополнительных нагрузок). Согласно ПУЭ одиночные алюминиевые и сталеалюминиевые провода сечением до 95 мм2 в пролетах длиной более 80 м, сечением 120—240 мм2 в пролетах более 100 м, сечением 300 мм2 и более в пролетах более 120 м, стальные провода и тросы всех сечений в пролетах более 120 м должны быть защищены от вибрации, если напряжение при среднегодовой температуре превышает: 3, 5 даН/мм2 (кгс/мм2) в алюминиевых проводах; 4, 0 даН/мм2 в сталеалюминиевых проводах; 18, 0 даН/мм2 в стальных проводах и тросах, В пролетах меньше указанных выше защита от вибрации не требуется. Защита от вибрации не нужна также на линиях с расщеплением фазы на два провода, если напряжение при среднегодовой температуре не превышает 4, 0 даН/мм2 в алюминиевых и, 4, 5 даН/мм2 в сталеалюминиевых проводах. Фаза с расщеплением на три и четыре провода, как правило, не требует защиты от вибрации. Участки любых линий, защищенные от поперечных ветров, не подлежат защите от вибрации. На больших переходах рек и водных пространств защита необходима независимо от напряжения в проводах. Как правило, снижение напряжений в проводах линий до значений, при которых не требуется защиты от вибрации, экономически невыгодно. Поэтому на линиях напряжением 35—330 кВ обычно устанавливаются виброгасители, выполненные в виде двух грузов, подвешенных на стальном тросе (см. рисунок 4.3). Виброгасители поглощают энергию вибрирующих проводов и уменьшают амплитуду вибрации около зажимов. Виброгасители должны быть установлены на определенных расстояниях от зажимов, определяемых в зависимости от марки и напряжения провода. На ряде линий для защиты от вибрации применяются армирующие прутки, выполненные из того же материала, что и провод, и наматываемые на провод в месте его закрепления в зажиме на длине 1, 5—3, 0 м. Диаметр прутков уменьшается в обе стороны от середины зажима. Армирующие прутки увеличивают жесткость провода и уменьшают вероятность его повреждения от вибрации.
Рисунок 4.3 - Виброгаситель на проводе
Однако наиболее эффективным средством борьбы с вибрацией являются виброгасители, Для защиты от вибрации одиночных сталеалюминиевых проводов сечением 25—70 мм2 и алюминиевых сечением до 95 мм2 рекомендуются гасители петлевого типа (демпфирующие петли), подвешиваемые под проводом (под поддерживающим зажимом) в виде петли длиной 1, 0 - 1, 35 м из провода того же сечения. В зарубежной практике петлевые гасители из одной или нескольких последовательных петель применяются также для защиты проводов больших сечений, в том числе и проводов на больших переходах. Пляска проводов, так же как и вибрация, возбуждается ветром, но отличается от вибрации большой амплитудой, достигающей 12 - 14 м, и большой длиной волны. На линиях с одиночными проводами чаще всего наблюдается пляска с одной волной, т. е. с двумя полуволнами в пролете (см. рисунок 4.4), на линиях с расщепленными проводами - с одной полуволной в пролете. В плоскости, перпендикулярной оси линии, провод движется при пляске по вытянутому эллипсу, большая ось которого вертикальна или отклонена под небольшим углом (до 10 - 20°) от вертикали. Диаметры эллипса зависят от стрелы провеса: при пляске с одной полуволной в пролете большой диаметр эллипса может достигать 60 - 90% стрелы провеса, при пляске с двумя полуволнами – 30 - 45% стрелы провеса. Малый диаметр эллипса обычно составляет 10 - 50% длины большого диаметра. Как правило, пляска проводов наблюдается при гололеде. Гололед отлагается на проводах преимущественно с подветренной стороны, вследствие чего провод получает неправильную форму (см. рисунок 4.5). При воздействии ветра на провод с односторонним гололедом скорость воздушного потока в верхней части увеличивается, а давление уменьшается; в результате возникает подъемная сила Vу, вызывающая пляску провода.
Рисунок 4.4- Волны пляски на Рисунок 4.5- Провод, покрытый гололедом проводе в пролете в воздушном потоке
Опасность пляски заключается в том, что колебания проводов отдельных фаз, а также проводов и тросов происходят несинхронно; часто наблюдаются случаи, когда провода перемещаются в противоположных направлениях и сближаются или даже схлестываются друг с другом. При этом происходят электрические разряды, вызывающие оплавление отдельных проволок, а иногда и обрывы проводов. Наблюдались также случаи, когда провода линий 500 кВ поднимались до уровня тросов и схлестывались.
Популярное:
|
Последнее изменение этой страницы: 2017-03-11; Просмотров: 1534; Нарушение авторского права страницы