Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Выбор дымососа и электродвигателя к нему
Вентиляторы, предназначенные для удаления продуктов сгорания и преодоления сопротивлений газового тракта котельной установки, называются дымососами. В качестве дымососов и вентиляторов для промышленных паровых и водогрейных котлов применяются центробежные машины, которые бывают одностороннего и двустороннего всасывания. Обозначение типа дымососа и вентилятора принято производить в зависимости от его аэродинамической схемы. Первая цифра в обозначении указывает относительный диаметр входа машины. Под этой величиной понимают отношение диаметра входного отверстия в диске рабочего колеса к наружному диаметру рабочего колеса. Вторая цифра обозначает угол лопаток на выходе с рабочего колеса. Номер машины соответствует диаметру рабочего колеса в дециметрах. Основными величинами, характеризующими работу - вентилятора (дымососа), являются: производительность (м3/с или м3/ч), полный напор (Па), потребляемая электродвигателем мощность (кВт), частота вращения (об/мин) и КПД по полному напору (%). Производительность и полный напор дымососа (вентилятора) связаны между собой зависимостью, называемой напорной характеристикой. Каждая машина в зависимости отее аэродинамической схемы при постоянной скорости вращения имеет свою напорную характеристику, определяемую экспериментально. Напорные характеристики машин приводятся в каталогах заводов-изготовителей. Для выбора дымососа необходимо знать приведённое полное давление газового тракта и приведённый расход дымососа: ; где - коэффициент запаса для сопротивления; - температура газов при которой производят испытания дымососа, для определения технических характеристик: ; ; где - коэффициент запаса. Дымосос выбирают по [2] стр. 411 таблица 14.4. Необходимо привести характеристики выбранного дымососа. Мощность электродвигателя дымососа: ; ; где - коэффициент запаса. Выбор электродвигателя производится по ближайшей большей мощности и синхронной частоте вращения 1000 об/мин из [2] стр143 таблица 5.28. Необходимо привести характеристики выбранного электродвигателя. Расчет воздушного тракта, выбор дутьевого вентилятора и электродвигателя к нему Обычно сопротивление воздушного тракта рассчитывается по методике той же, что и для газового тракта. В рамках курсового проекта допускается применять упрощенную методику. Дутьевой вентилятор должен преодолевать сопротивление воздуховодов и горящего слоя угля на решетке. Для выбора дутьевого вентилятора необходимо знать приведенное сопротивление воздушного тракта и приведенный расход холодного воздуха. Приведённое сопротивление: ; ; Приведённая производительность вентилятора: ; где - коэффициент запаса; Расход холодного воздуха: ; где - присос воздуха в топочную камеру; - присос воздуха в воздуховод; Дутьевой вентилятор выбирают по [2] стр. 406 таблица 14.1. Необходимо привести характеристики выбранного вентилятора. Мощность вентилятора: ; где - коэффициент запаса; Выбор электродвигателя производится по ближайшей большей мощности и синхронной частоте вращения 1000 об/мин из [2] стр143 таблица 5.28. Необходимо привести характеристики выбранного электродвигателя.
ГЛАВА 2. Выбор и расчет системы подготовки воды Общие сведения о воде Для водоснабжения энергообъектов используются в большинстве случаев природные воды, как поверхностные (из рек, озер, прудов), так и подземные (из артезианских скважин). Все воды содержат разнообразные примеси, попадающие в воду в процессе ее естественного круговорота в природе. Кроме того, возможно загрязнение водоисточников бытовыми и промышленными стоками. Все примеси, загрязняющие воду, подразделяются на три вида в зависимости от размера их частиц: 1. Истинно растворенные примеси находятся в воде в виде ионов, отдельных молекул, комплексов или состоят из нескольких молекул. Размер этих частиц менее 10-6 мм. В истинно растворенном состоянии в воде находятся газы (О2, СО2, Н2S, N2), а также катионы и анионы поступивших в воду солей Са2+, Мg2+, Nа+, К+, НСО3-, Сl-, SО42-, NO3-, NО2-. 2. Коллоидно-растворенные примеси имеют размеры частиц порядка 10-6 – 10-4 мм. Каждая из частиц образована большим числом молекул (их может быть несколько тысяч). Эти примеси могут быть как органического, так и минерального происхождения. К первым относятся гуминовые вещества, вымываемые из почвы, ко вторым – кремниевые кислоты, соединения железа. 3. Грубодисперсные примеси имеют размер частиц более 10-4 мм. Это растительные остатки, частицы песка, глины и т.д. Содержание грубодисперсных примесей в природных водах различно в разное время года: для равнинных рек максимальное содержание наблюдается в период паводка (таяния снегов), для горных рек – в паводок и в периоды ливней в горах. Для оценки качества природных вод и вод энергообъектов на различных стадиях технологического процесса приняты нижеперечисленные показатели: 1. Взвешенные вещества – определяют непосредственно в отобранной пробе, пользуясь весовым методом. 2. Сухой остаток СО (мг/л) – определяют путем выпаривания определенного объема предварительно профильтрованной пробы и последующего просушивания остатка при температуре 110-120 оС. Сухой остаток выражает содержание растворенных в воде минеральных и органических примесей, нелетучих при указанной температуре. Содержащиеся в природной воде Са(НСО3)2 и Мg(НСО3)2 при выпаривании разлагаются с выделением Н2О и СО2, и в сухом остатке появляются СаСО3 и МgСО3. Это надо иметь в виду, сравнивая сухой остаток с минеральным. 3. Минеральный остаток (общее солесодержание) – подсчитывается путем суммирования концентраций катионов и анионов, определенных при проведении полного химического анализа воды. 4. Прокаленный остаток (мг/л) – характеризует содержание в воде минеральных веществ. Его определяют путем прокаливания при 800 оС сухого остатка. При прокаливании сгорают органические вещества и частично разлагаются карбонаты. 5. Окисляемость – показатель, характеризующий содержание в воде органических веществ. 6. Общая жесткость Жо (мг-экв/л, мкг-экв/л) – суммарная концентрация в воде катионов кальция и магния. Общую жесткость подразделяют на карбонатную (Жк) и некарбонатную (Жнк): Жо=Жк + Жнк. Карбонатная жесткость обуславливается наличием в воде бикарбонатов и карбонатов кальция и магния, некарбонатная жесткость – присутствием в воде хлоридов и сульфатов кальция и магния. 7. Общая щелочность воды Що (мг-экв/л) – суммарная концентрация в воде растворимых гидроксидов и анионов слабых кислот НСО3- и СО32- за вычетом концентрации ионов водорода. 8. Ионный состав воды. Вода всегда электрически нейтральна, поэтому сумма концентраций содержащихся в ней катионов равна сумме концентраций анионов при условии, что они выражены в мг-экв/л. Этой закономерностью, называемой уравнением электронейтральности раствора, пользуются при проверке правильности выполнения анализа воды. В водах энергетических объектов могут присутствовать ионы, приведенные в таблице:
Химически чистая вода является очень слабым электролитом, только одна из десяти миллионов молекул диссоциирует на ионы Н+ и ОН-: Н2ОÛ Н+ + ОН-. Отрицательный логарифм концентрации водородных ионов, называемый водородным показателем рН, для химически чистой воды равен 7. В зависимости от значения рН водного раствора оценивают реакцию среды:
Вода для питьевых целей имеет рН=6, 5-9, 0. 9. Растворимые газы. Для вод, используемых для энергетических целей, важное значение имеют растворенные в воде газы: кислород, углекислота, сероводород, аммиак. Кислород поступает в воду из воздуха, где его содержится около 21%. Концентрация кислорода в поверхностных водах близка к значению растворимости его при данной температуре и давлении. Растворимость О2 при контакте с воздухом при атмосферном давлении 760 мм Нg следующая:
Основным источником поступления в воду углекислоты (содержание СО2 в воздухе невелико – всего 0, 04%) являются биохимические процессы разложения органических веществ в природе. Растворяясь в воде, СО2 реагирует с водой, образуя гидратированную форму Н2СО3. Популярное:
|
Последнее изменение этой страницы: 2017-03-11; Просмотров: 1611; Нарушение авторского права страницы