Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Архитектура сотовых сетей связи и сети абонентского доступа



Архитектура сотовых сетей связи и сети абонентского доступа

Введение

В данном курсовом проекте необходимо рассмотреть вопросы планирования и взаимодействия сетей сотовой связи. Это будет проиллюстрировано на примерах: построение сетей пикосотовой архитектуры будет рассмотрено на примере стандарта DECT; построение сетей микросотовой архитектуры будет рассмотрено на примере стандарта GSM-1800; построение сетей макросотовой архитектуры будет рассмотрено на примере стандарта GSM-900.

Также будут рассмотрены сети широкополосного абонентского доступа.

Система RLL

Использование радио в качестве альтернативы медному кабелю для доступа к сети обретает все большую популярность. Первые системы, основанные на сотовой технологии, начали эксплуатироваться в начале 90-х годов. Сегодня всем очевидны преимущества этого вида связи в отношении быстроты подключения абонентов, а также низкой стоимости установки и функционирования соответствующих систем. Похоже, в ближайшее время системы местной радиосвязи (Radio in the local loop — RLL) получат широкое распространение.

Системы RLL привлекательны как для относительно давно действующих операторов кабельных сетей, так и для новых конкурирующих с ними компаний, которые предоставляют услуги сетей связи. Там, где кабельные сети не получили большого распространения, системы RLL могут быть использованы для подключения к глобальным сетям большого числа новых абонентов за значительно более короткое время по сравнению со временем, необходимым для развертывания кабельной сети. Но в то же время местная радиосвязь может играть значительную роль и в местах с развитой кабельной инфраструктурой связи. Давно действующие операторы кабельных сетей могут использовать системы RLL для предоставления своим абонентам дополнительных линий передачи данных, например для факсимильной или модемной связи, без наращивания кабельной системы связи.

Конкурирующие с ними новые поставщики услуг сетей связи также могли бы использовать технологию RLL для подключения абонентов. Основное преимущество здесь в том, что оператору нет необходимости знать, где будут находиться его клиенты. Недавно появившийся оператор может ожидать, что, скажем, 10 – 15 % абонентов телефонных сетей, находящихся на данной территории, перейдут на новое обслуживание, однако точно определить их он не в состоянии. Используя технологию RLL, оператор способен минимизировать предварительные затраты на обеспечение обслуживания потенциальных абонентов. Весомая часть сетевой инфраструктуры может быть установлена (и оплачена) при подключении абонента к сети. В этой ситуации система RLL наиболее экономичное средство, обеспечивающее обслуживание абонентов.

Системы RLL, соответствующие стандарту DECT, оптимизированы для городских и пригородных территорий, где плотность абонентов довольно высока. При использовании направленных антенн (на обоих концах радиоканала) эффективная дальность действия базовой станции увеличивается до 5 км. Узел доступа DECT (базовая станция RLL) содержит некоторое число направленных антенн обычно расположенных таким образом, чтобы охватить все направления (в горизонтальной плоскости). Вместо бесшнуровых телефонов абоненты системы RLL применяют стационарные устройства доступа, которые оснащены направленными антеннами, наведенными на ближайший узел доступа DECT. К стационарному устройству доступа могут быть подключены телефоны, факсимильные аппараты, модемы и другие средства.

Недавно ETSI были определены дополнения к стандарту DECT, включающие увеличенную преамбулу и улучшенный механизм синхронизации, благодаря которым повысится стабильность параметров сигналов DECT при их распространении на большие расстояния и при отражениях. Эти дополнения призваны сделать стандарт DECT более подходящим для систем связи, работающих вне помещений, включая средства RLL.

В условиях средней и большой плотности абонентов системы RLL, соответствующие стандарту DECT, становятся экономически более выгодными, чем сотовые. " Критической" точкой здесь является плотность 20 абонентов на 1 кв. км. Одна из причин этого кроется в формате TDMA, использованном в DECT, который позволяет одному радиопередатчику поддерживать одновременно до 12 соединений. Такого не предусматривает ни одна другая цифровая сотовая или бесшнуровая технология связи.

В целом можно сказать, что системы RLL, соответствующие стандарту DECT, лучше других подходят для работы в условиях средней или высокой плотности абонентов — либо в городах, либо в сельской местности, где число абонентов может быть и невелико, однако плотность их размещения довольно высока. Эти системы подойдут также абонентам, которые сейчас или в будущем захотят использовать линии связи для передачи данных или для работы с сетью ISDN.

Система WLL

Для операторов, предоставляющих услуги связи особый интерес представляет использование DECT в беспроводных местных сетях связи (Wireless Local Loop — WLL). Речь идет об организации “последней мили” подключения абонентов к телекоммуникационным сетям общего пользования. Такое решение может быть использовано как в городских условиях, так и поселках и деревнях. При этом для полноценного использования возможностей DECT, желательно наличие мест с достаточно высокой плотностью абонентов. Для WLL-систем не всегда удобно подключать устройства доступа в проводном варианте.

Важным свойством WLL-cистем является малое время развертывания. Это, в частности, связано с тем, что отпадает необходимость в рытье траншей, укладывании кабеля, а также внутренней разводке телефонных проводов в здании.

Структура DECT-систем

Контроллер предназначен для сопряжения системы DECT с внешними сетями, например, городской и/или учрежденческой АТС. При этом ЦКС, как правило, обеспечивает преобразование протоколов сигнализации между АТС и системой DECT. В некоторых случаях для этих целей используются специальные устройства — конвертеры протоколов. Кроме того, в ЦКС осуществляется преобразование речевой информации ADPCM в PCM при сопряжении по цифровым интерфейсам и ADPCM в аналоговый сигнал при сопряжении по аналоговым интерфейсам.

БС— Базовая станция (в иностранной литературе они называются Radio Fixed Part) обеспечивают требуемое радиопокрытие. БС подключается к контроллеру по одной или двум парам проводов. Базовая станция представляет собой приемопередатчик, обеспечивающий одновременную работу по 4 – 12 каналам, работающий на две пространственно разнесенные антенны. БС выполняются в двух вариантах – для внутреннего и наружного размещения.

УД— Устройства доступа представляют собой мобильную трубку или стационарный абонентский терминал, который иногда именуется “радиорозеткой”.

Для увеличения зоны покрытия базовой станции может также применятся ретранслятор (репитер).

Профили приложений DECT

В профилях приложений содержатся дополнительные спецификации, определяющие как эфирный интерфейс DECT должен быть использован в конкретных приложениях. Стандартные сообщения и суб-протоколы были созданы из набора средств базового стандарта и подстроены под конкретные приложения с целью обеспечения максимальной совместимости оборудования DECT от разных производителей. Помимо самих профилей ETSI также разработал спецификации тестов на соответствие профилю, позволяющие проводить всестороннее тестирование оборудования DECT, претендующее на удовлетворение требованиям профиля. Профили приложений определяют дополнительную спецификацию протокольного стека DECT для конкретных приложений. Хотя базовый стандарт DECT, определенный в ETS 300175, обеспечивает возможность реализации широкого спектра услуг, основная цель профилей приложения — обеспечить совместимость оборудования разных производителей. Существуют следующие основные профили DECT, определенные ETSI:

  • GAP (Generic Access Profile);
  • CAP (CTM Access Profile);
  • IAP и IIP (DECT/ISDN Interworking profiles);
  • GIP (DECT/GSM Interworking Profile);
  • DSP (Data Service Profile);
  • RAP (Radio Local Loop Access Profile);
  • DMAP (DECT Multimedia Access Profile);
  • DPRS (DECT Packet Radio Services).

GAPкак основной профиль доступа был разработан для таких приложений DECT как домашние и офисные системы. GAP является главным профилем доступа DECT, предназначенным для использования в системах, поддерживающих телефонные услуги независимо от типа присоединенной сети. Он определяет минимум необходимых требований к АС и БС, обеспечивающих их совместимость. В GAP определены процедуры для установления и разрушения входящих и исходящих соединений, для поддержания мобильности, включая роуминг.

Хотя стандарт DЕCT определяет технологию радиодоступа, обеспечивающую мобильность, в нем не рассмотрены сетевые аспекты системы. Поэтому технология DECT может быть использована для доступа в любые сети. GIPописывает способ подключения сетей DECT к сети GSM. Такой доступ обеспечивается интерфейсом к сети GSM (к MSC). При этом сеть GSM воспринимает DECT как систему базовых станций (BSC).

Использование этого профиля обеспечивает два преимущества. Во-первых, появилась возможность строительства мобильных сетей DECT на основе наземной инфраструктуры сетей GSM. При этом существенно снижаются затраты на создание инфраструктуры сете DECT поскольку сети GSM имеют практически глобальное распространение и постоянно увеличивают охват территорий. Во-вторых, для операторов сетей GSM появилась возможность использования мобильных дуальных терминалов GSM/DECT для увеличения трафика, так как сети DECT поддерживают очень высокую плотность трафика. Сети, построенные на основе DECT и GSM, обладают такими качествами, как высокая плотность трафика для малоподвижных абонентов в местах наибольшего скопления абонентов за счет подсистемы базовых станций DECT, большая площадь радиопокрытия и высокая мобильность за счет подсистемы базовых станций GSM.

В настоящее время рассматривается другой способ взаимодействия сетей GSM и DECT через ISDN сети. Этот подход основан на протоколе DSS1+, являющимся расширением протокола DSS1. При разработке протоколов стандарта DECT был учтен богатый опыт, накопленный при создании протоколов для сетей ISDN. Поэтому предполагается тесное взаимодействие ISDN и DECT. Такое взаимодействие определяется профилями IAPи IIP. Оба профиля поддерживают одинаковый набор услуг. Основное отличие между ними заключается в способе соединения.

Первый из них ориентирован на доступ к услугам сети ISDN посредством стандартного терминала DECT. При этом со стороны сети ISDN терминал DECT виден как обычный терминал ISDN с соответствующими возможностями. Преимущества данного профиля заключаются в том, что для получения услуг ISDN используется только один трафиковый канал DECT. Информационный канал ISDN (В канал) шириной 64 Кбит/с передается в канал “данных пользователя” DECT путем преобразования кодирования РСМ в ADPCM. Очевидно, что этот профиль может обслуживать только речевые терминалы.

Второй профиль (IIP) называется профилем промежуточной системы и используется для подключения стандартного терминала ISDN к сети ISDN посредством радиоинтерфейса DECT. При этом появляется возможность подключения и терминалов передачи данных на скорости до 64 кбит/с. Недостатком этого профиля является неэффективное использование радиоспектра. Для организации информационного канала используются два трафиковых канала DECT. Кроме того, для отображения канала сигнализации (D канала ISDN) выделяется еще один канал. Таким образом, для одного соединения используются 3 трафиковых канала DECT.

В рамках этого профиля возможна организация стандартной канальной структуры 2B+D базового доступа ISDN путем выделения 5 трафиковых каналов DECT. При этом DECT обеспечивает стандартное сетевое окончание ISDN с интерфейсом SO. Преимуществом данного профиля является возможность использования любого стандартного терминала ISDN, в том числе и терминалов передачи данных.

Для систем абонентского радиодоступа (WLL) на основе технологии DECT разработан профиль RAP. RAP определяет протоколы и методы предоставления услуг сетей общего пользования конечным пользователям с использованием технологии DECT. RAP определяет два типа сервиса:

  • базовые телефонные услуги, включая передачу данных с помощью модемов на скоростях вплоть до V.34;
  • широкополосные услуги, включая ISDN и передачу данных с коммутацией пакетов.

Услуги предоставляются через стандартную АС DECT, аналогично ISDN.

В связи с тем, что WLL на основе DECT пользуются большой популярностью в мире, в ETSI рассматривается вопрос о расширении возможностей стандарта DECT по поддержке удаленных терминалов (более 5 км). На данный момент предлагается механизм " усовершенствованной схемы синхронизации", обеспечивающий связь на расстояниях до 16 км. Достоинство этого предложения заключается в сохранении совместимости с существующими системами. Таким образом, DECT является очень привлекательной технологией для создания систем WLL с точки зрения экономической эффективности, простоты планирования, монтажа и эксплуатации.

Для построения сетей доступа на основе технологии DECT определен профиль доступа в сети мобильных терминалов (СТМ). СТМ обеспечивает роуминг терминалов между сетями доступа DECT. В местах, где обеспечивается радиопокрытие DECT системой (домашней, офисной или общего пользования), беспроводный телефон может обслуживать как входящие, так и исходящие вызовы. При этом мобильный терминал регистрируется только в одной системе с одним телефонным номером. Таким образом, обеспечивается связь в любом месте, где присутствует DECT система. Причем для терминала во всех сетях сохраняется один и тот же сетевой номер, поэтому входящие звонки не теряются.

Основное отличие CAP от GIP заключается в том, что СТМ обеспечивает мобильность не только в пределах сети GSM, но может взаимодействовать с любой сетью, поддерживающей мобильность. Примерами таких сетей являются сети ISDN с расширением поддержки мобильности (протокол DSSI+) и сети ОКС-7 (INAP и MAP). Надо отметить, что CAP является надмножеством GAP, что обеспечивает совместимость с GAP терминалами, т.е. сохраняется преемственность между GAP и CAP.

Интеграция DECT систем с сетями передачи данных (СПД) обеспечивает пользователям СПД новое качество — мобильность. Так как существует большое разнообразие СПД, то ETSI определил ряд профилей передачи данных DSP, которые отличаются по предоставляемым услугам и степени мобильности. По степени мобильности профили подразделяются на два класса:

  • без поддержки мобильности в пределах одной БС;
  • с поддержкой мобильности в частных сетях и сетях общего пользования.

По предоставляемым услугам профили передачи данных делятся на 6 типов:

  • низкоскоростная передача данных с frame relay (до 24, 6 Кбит/с);
  • высокоскоростная передача данных с frame relay (до 552 Кбит/с, в будущем — до 2 Мбит/с);
  • передача данных на основе коммутации пакетов;
  • прозрачная передача данных;
  • передача коротких сообщений с/без подтверждения;
  • услуги телесервиса (например, FAX).

DMAPразработан в первую очередь для организации беспроводного доступа в сети Internet через ISDN сети и поддержания речевых терминалов и терминалов передачи данных DECT. Поэтому базируется DMAP на протоколах ISDN, GAP и DSP. Этот профиль тесно связан с компьютерной технологией, в частности ноутбуками. Потому для обеспечения совместимости и упрощения доступа в терминале эмулируется клиент CAPI (v. 1.1/2.0), а в базовой станции — сервер CAPI. DPRSсоздает основу для сопряжения всех услуг беспроводной пакетной передачи данных, которые предоставляются через интерфейс DECT, независимо от того, в каком приложении (домашний сектор, домашний офис, малый офис, корпоративный сектор, системы общего пользования) используется этот продукт, и, следовательно, значительно подтолкнет развитие рынка DECT-продуктов передачи данных.

Преимущества выбора DECT

Качество проводной линии связи — 32k ADPCM.

Самая высокая скорость передачи данных среди всех TDMA-стандартов.

Возможность создания различных систем на основе DECT:

  • домашние бесшнуровые многотрубочные системы, которые также подходят для малого офиса,
  • микросотовые беспроводные корпоративные системы (офисные и учрежденческие АТС с радиодоступом),
  • микросотовые системы общего пользования (СТМ),
  • системы фиксированного радиодоступа (WLL) и др.

Сосуществование различных некоординируемых DECT-систем в общем частотном диапазоне без необходимости частотного планирования Совместимость оборудования разных производителей (при наличии GAP).

Обеспечение перехода из соты в соту без разрыва соединения (хэндовер).

Возможность обслуживания одной трубки в разных сетях (частных и общего пользования).

Обеспечение большого трафика — до 10, 000 Эрл/км2.

Совместимость с другими радиосистемами Отсутствие канала управления — устойчивость к радиопомехам.

Низкий уровень излучения — безопасность для здоровья.

Сетевые и радиоинтерфейсы

При проектировании цифровых сотовых систем подвижной связи стандарта GSM рассматриваются интерфейсы трех видов: для соединения с внешними сетями; между различным оборудованием сетей GSM; между сетью GSM и внешним оборудованием.

 

Соединение с PSTN

Соединение с телефонной сетью общего пользования осуществляется MSC по линии связи 2 Мбит/с в соответствии с системой сигнализации SS N 7. Электрические характеристики 2 Мбит/с интерфейса соответствуют Рекомендациям МККТТ G.732.

 

Соединение с ISDN

Для соединения с создаваемыми сетями ISDN предусматриваются четыре линии связи 2 Мбит/с, поддерживаемые системой сигнализации SS N 7 и отвечающие Рекомендациям Голубой книги МККТТ Q.701-Q.710, Q.711-Q.714, Q.716, Q.781, 0.782, 0.791, 0.795, 0.761 – 0.764, 0.766.

 

Внутренние GSM-интерфейсы

Интерфейс между MSC и BSS (А-интерфейс) обеспечивает передачу сообщений для управления BSS, передачи вызова, управления передвижением. А-интерфейс объединяет каналы связи и линии сигнализации. Последние используют протокол SS N7 МККТТ. Полная спецификация А-интерфейса соответствует требованиям серии 08 Рекомендаций ETSI/GSM.

Интерфейс между MSC и HLR совмещен с VLR (В-интерфейс). Когда MSC необходимо определить местоположение подвижной станции, он обращается к VLR. Если подвижная станция инициирует процедуру местоопределения с MSC, он информирует свой VLR, который заносит всю изменяющуюся информацию в свои регистры. Эта процедура происходит всегда, когда MS переходит из одной области местоопределения в другую. В случае если абонент запрашивает специальные дополнительные услуги или изменяет некоторые свои данные, MSC также информирует VLR, который регистрирует изменения и при необходимости сообщает о них HLR.

Интерфейс между MSC и HLR(С-интерфейс) используется для обеспечения взаимодействия между MSC и HLR. MSC может послать указание (сообщение) HLR в конце сеанса связи для того, чтобы абонент мог оплатить разговор. Когда сеть фиксированной телефонной связи не способна исполнить процедуру установления вызова подвижного абонента, MSC может запросить HLR с целью определения местоположения абонента для того, чтобы послать вызов MS.

Интерфейс между HLR и VLR (D-интерфейс) используется для расширения обмена данными о положении подвижной станции, управления процессом связи. Основные услуги, предоставляемые подвижному абоненту, заключаются в возможности передавать или принимать сообщения независимо от местоположения. Для этого HLR должен пополнять свои данные. VLR сообщает HLR о положении MS, управляя ею и переприсваивая ей номера в процессе блуждания, посылает все необходимые данные для обеспечения обслуживания подвижной станции.

Интерфейс между MSC (Е-интерфейс) обеспечивает взаимодействие между разными MSC при осуществлении процедуры HANDOVER — " передачи" абонента из зоны в зону при его движении в процессе сеанса связи без ее перерыва. Интерфейс между BSC и BTS(A-bis интерфейс) служит для связи BSC с BTS и определен Рекомендациями ETSI/GSM для процессов установления соединений и управления оборудованием, передача осуществляется цифровыми потоками со скоростью 2, 048 Мбит/с. Возможно использование физического интерфейса 64 кбит/с. Интерфейс между BSC и ОМС (О-интерфейс) предназначен для связи BSC с ОМС, используется в сетях с пакетной коммутацией МККТТ Х.25.

Внутренний BSC-интерфейс контроллера базовой станции обеспечивает связь между различным оборудованием BSC и оборудованием транскодирования (ТСЕ); использует стандарт ИКМ-передачи 2, 048 Мбит/с и позволяет организовать из четырех каналов со скоростью 16 Кбит/с один канал на скорости 64 Кбит/с. Интерфейс между MS и BTS (Um-радиоинтерфейс) определен в сериях 04 и 05 Рекомендаций ETSI/GSM. Сетевой интерфейс между ОМС и сетью, так называемый управляющий интерфейс между ОМС и элементами сети, определен ETSI/GSM. Рекомендациями 12.01 и является аналогом интерфейса Q.3, который определен в многоуровневой модели открытых сетей ISO OSI. Соединение сети с ОМС могут обеспечиваться системой сигнализации МККТТ SS N7 или сетевым протоколом Х.25. Сеть Х.25 может соединяться с объединенными сетями или с PSDN в открытом или замкнутом режимах.

GSM — протокол управления сетью и обслуживанием также должен удовлетворять требованиям Q.3 интерфейса, который определен в ETSI/GSM Рекомендациях 12.01. Интерфейсы между сетью GSM и внешним оборудованием — интерфейс между MSC и сервис-центром (SC) — необходим для реализации службы коротких сообщений. Он определен в ETSI/GSM Рекомендациях 03.40. Каждый центр управления и обслуживания сети должен соединяться с другими ОМС, управляющими сетями в других регионах или другими сетями. Эти соединения обеспечиваются Х-интерфейсами в соответствии с Рекомендациями МККТТ М.ЗО. Для взаимодействия ОМС с сетями высших уровней используется ОЗ-интерфейс.

 

GSM-1800 (DCS-1800)

Модификация стандарта GSM-900, сравнительно молодой и ещё не получил широкого развития в мире. Цифровой стандарт, диапазон частот — 1710 – 1880 МГц.

 

Отличия GSM-1800 от GSM-900

Фактически — только рабочими частотами. Предоставляемый сервис зависит больше от оператора, чем от диапазона. Однако тут есть ряд интересных моментов:

  • из-за более высокой частоты уменьшается максимально возможный радиус соты, а точнее — максимальное удаление абонента от базовой станции. Для GSM-900 это расстояние равно 35 км. Для GSM-1800 — около 10 км.
  • на частотах 1800 – 2000 МГц радиоволны имеют несколько иные проникающие свойства.
  • резкий плюс — куда больший частотный ресурс, так как этот частотный диапазон не успели в свое время захватить " компетентные" органы. Кроме этого в диапазонах 1800 и 1900 частотное планирование выполняется гибче в силу большего числа каналов и меньшего радиуса сот.

 

Особенности

Максимальная излучаемая мощность мобильных телефонов стандарта GSM-1800 — 1Вт, для сравнения у GSM-900 — 2Вт. Большее время непрерывной работы без подзарядки аккумулятора и снижение уровня радиоизлучения, хотя если учесть тот факт, что это самая высокая частота, то можно предположить увеличение " эффекта микроволновой печи на ваш организм.

Возможность использования телефонных аппаратов, работающих в стандартах GSM-900 и GSM-1800 одновременно. Такой аппарат функционирует в сети GSM-900, но, попадая в зону GSM-1800, переключается — вручную или автоматически. Это позволяет оператору рациональнее использовать частотный ресурс, а клиентам — экономить деньги за счет низких тарифов. В обеих сетях абонент пользуется одним номером. Но использование аппарата в двух сетях возможно только в тех случаях, когда эти сети принадлежат одной компании, или между компаниями, работающими в разных диапазонах, заключено соглашение о роуминге.

Проблема состоит ещё в том, что зона охвата для каждой базовой станции значительно меньше, чем в стандартах GSM-900, AMPS/DAMPS-800, NMT-450. Необходимо большее число базовых станций. Чем выше диапазон частот, тем больше проникающая способность радиоволн и тем меньше способность отражаться и огибать преграды. Что вносит некоторые новые моменты в вопросы планирования и взаимодействия с сетями других стандартов, однако это не отражается на самих принципах планирования, они остаются такими же, как и для стандарта GSM-900. А вопросы взаимодействия больше зависят от оператора применяющего данный стандарт для построения своей сети.

 

От ISDN к ADSL

В 90-е годы в качестве способа более быстрого доступа к Интернет там, где это было возможно, стали широко использоваться линии ISDN. Со временем, когда пропускная способность ISDN окажется недостаточной, естественным решением будет " дополнение" абонентской линии ISDN высокоскоростным каналом ADSL. Так же как и в случае с обычными аналоговыми линиями, такой способ, называемый " ISDN ниже ADSL" (" ISDN under ADSL" ), предусматривает использование фильтров для разделения сигналов ADSL и ISDN.

Такое решение особенно привлекательно тем, что оно практически не вызывает никаких проблем с выполнением стандартов узкополосной ISDN и, следовательно, с реализацией способа перехода от ISDN к ADSL. Поэтому данный способ эволюции будет особенно популярен в странах, где широко внедрилась узкополосная ISDN, причём вероятнее всего будет преобладать переход от ISDN к полномасштабной ADSL.

 

От HDSL к ADSL

Технология симметричной цифровой абонентской линии HDSL(High Bit-Rate Digital Subscriber Line — высокоскоростная цифровая абонентская линия) безусловно является самой зрелой и самой дешёвой из технологий xDSL. Она возникла как эффективная альтернатива устаревшей аппаратуре первичных ЦСП Е! для использования на соединительных линиях местных сетей, а также в качестве первичного доступа к ISDN (PRA ISDN). Благодаря широкому использованию HDSL в самых различных регионах мира хорошо отработаны процедуры развёртывания таких систем, их эксплуатационного обслуживания и тестирования; хорошо известны также высокое качество параметров и высокая надёжность систем HDSL. Поэтому операторы связи и провайдеры сетевых услуг охотно используют оборудование HDSL для высокоскоростного доступа к Интернет. Однако чаще всего применение HDSL в сети абонентского доступа требует применения по крайней мере, двух медных пар, что практически не всегда возможно. Использование же для организации линии HDSL только одной пары существенно сокращает перекрываемые расстояния. Кроме того, в оборудовании HDSL не предусмотрена возможность организации аналогового телефона, что требует использования для этой цели дополнительной абонентской пары. Таким образом, имеются существенные факторы, стимулирующие целесообразность перехода от HDSL к ADSL. При такой миграции резко увеличивается пропускная способность сети доступа в нисходящем направлении (т.е. от сети к абоненту), достаточно всего одной пары и появляется возможность организации аналогового телефона. Однако при таком сценарии миграции могут возникнуть проблемы. Так, пропускная способность сети доступа ADSL в восходящем направлении (т.е. от абонента к сети), как правило, меньше, чем соответствующая пропускная способность пропускная способность HDSL.

 

От IDSL к ADSL

Одной из модификаций технологий xDSL является так называемая технология IDSL, имеющая более полную аббревиатуру " ISDN DSL". IDSL(ISDN Digital Subscriber Line — цифровая абонентская линия IDSN). Эта технология появилась как адекватный ответ производителей оборудования и провайдеров сети Интернет на проблемы, связанные с перегрузкой коммутируемой сети ISDN трафиком пользователей Интернет, и недостаточной для многих пользователей скоростью доступа к сети Интернет с помощью аналоговых модемов.

Технология IDSL предполагает просто формирование цифрового тракта " точка-точка" с пропускной способностью 128 Кбит/с на основе формата основного доступа BRI ISDN путём объединения двух основных B-каналов по 64 Кбит/с каждый; при этом предусмотренный в формате BRI ISDN вспомогательный D-канал не используется, т.е., тракт IDSL имеет структуру типа " 128+0" Кбит/с. IDSL использует стандартные микросхемы цифровой абонентской линии ISDN (так называемый U-интерфейс). Однако в отличие от U-интерфейса ISDN, оборудование IDSL подключается к сети Интернет не через коммутатор ТфОП или ISDN, а через маршрутизатор. Поэтому технология IDSL используется только для передачи данных и не может предоставлять речевые услуги коммутируемых ТфОП или ISDN.

Наиболее привлекательными свойствами IDSL являются зрелость технологии ISDN, дешевизна микросхем U-интерфейса ISDN, простота инсталляции и технического обслуживания по сравнению с инсталляцией и техническим обслуживанием стандартной ISDN (поскольку IDSL работает в обход коммутационной станции ISDN), а также возможность использования стандартного измерительного оборудования ISDN. Кроме того, операторы связи и провайдеры услуг Интернет, развёртывающие ISDN, как правило, прекрасно знакомы с последней. Поэтому нет проблем, связанных с планированием и техническим обслуживанием линий IDSL. Основным побудительным стимулом миграции от IDSL к ADSL является обеспечение более быстрого доступа к Интернет по сравнению с аналоговым модемом. Следует, однако, иметь в виду, что при использовании IDSL для доступа к Интернет необходима вторая абонентская линия для доступа к ТфОП. Переход к технологии ADSL, сохраняющей возможность абонентского доступа к коммутируемой телефонной сети (а при необходимости и к сети Интернет), позволяет пользователю ограничиться только одной абонентской линией, что выгодно не только последнему, но и оператору связи.

SDSL(Symmetric Digital Subscriber Line — симметричная цифровая абонентская линия). Также как и технология HDSL, технология SDSL обеспечивает симметричную передачу данных со скоростями, соответствующими скоростям линии Т11, но при этом технология SDSL имеет два важных отличия. Во-первых, используется только одна витая пара проводов, а во-вторых, максимальное расстояние передачи ограничено 3 км. Технология обеспечивает необходимые для представителей бизнеса преимущества: высокоскоростной доступ в сеть Интернет, организация многоканальной телефонной связи (технология VoDSL) и т. п. К этому же подсемейству следует отнести и MSDSL (Multi-speed SDSL) технологию, которая позволяет изменять скорость передачи для достижения оптимальной дальности и наоборот.

SDSL можно охарактеризовать также как и HDSL. Правда она позволяет пройти меньшее расстояние, чем HDSL, зато можно сэкономить на второй паре. Очень часто офис пользователя оказывается на расстоянии не более 3-х км от точки присутствия оператора и тогда эта технология имеет явное преимущество по сравнению с HDSL по соотношению цена/качество услуги для ее пользователя. Вариант MSDSL позволяет, в случае не очень хорошего состояния кабеля, пройти тоже расстояние, но с меньшей скоростью, к тому же полные 2 Мбит/с необходимы не всем клиентам и очень часто достаточно 256 или даже 128 кбит/с.

В качестве ещё одной модификации SDSL используется оборудование HDSL2, которое представляет собой усовершенствованный вариант HDSL с применением более эффективного линейного кода передачи.

 

От ADSL к VDSL

По мере роста потребностей пользователя в увеличении пропускной способности чисто медные сети абонентского доступа будут всё более мигрировать к комбинированным медно-оптическим сетям, известным под общим названием FITL (Fiber In The Loop). По мере приближения оптического волокна в этой комбинированной сети к помещению пользователя на её медном участке может оказаться востребованной технология VDSL, которая придёт на смену ADSL. VDSL(Very High Bit-Rate Digital Subscriber Line — сверхвысокоскоростная цифровая абонентская линия). Технология VDSL является наиболее высокоскоростной технологией xDSL. В ассиметричном варианте она обеспечивает скорость передачи данных " нисходящего" потока в пределах от 13 до 52 Мбит/с, а скорость передачи данных " восходящего" потока в пределах от 1, 6 до 6, 4 Мбит/с, в симметричном варианте — в пределах от 13 до 26 Мбит/с, причем по одной витой паре телефонных проводов. Технология VDSL может рассматриваться как экономически эффективная альтернатива прокладыванию волоконно-оптического кабеля до конечного пользователя. Однако максимальное расстояние передачи данных для этой технологии составляет от 300 м (при скорости в 52 Мбит/с) и до 1, 5 км (при скорости до 13 Мбит/с). Технология VDSL может использоваться с теми же целями, что и ADSL; кроме того, она может использоваться для передачи сигналов телевидения высокой четкости (HDTV), видео-по-запросу и т. п.

Наше отставание в развитии сетей передачи данных сыграло положительную роль, — операторы не успели вложить существенные средства в оборудование коммутируемых сетей узкополосной ISDN, а также в развитие абонентских участков сетей передачи данных на основе оборудования HDSL и IDSL.

Из вышеизложенного ясно, что в российских условиях наибольшее распространение получит сценарий эволюции сетей проводного абонентского доступа от аналогового модема к ADSL. Уже сегодня спрос на услуги высокоскоростного доступа в Интернет вырос настолько, что имеет смысл, по крайней мере, начать проработку экономических и технических вопросов развертывания сетей абонентского доступа на основе xDSL технологий.

Таким образом, каждая технология из семейства xDSL технологий с успехом решает ту задачу, для решения которой она разрабатывалась. Две из них — ADSL и VDSL — позволяют операторам телефонной связи предоставлять новые виды сервиса, а существующая телефонная сеть имеет реальные перспективы стать сетью с полным набором услуг. Что же касается самих операторов, то, скорее всего, со временем останутся лишь те, которые смогут предоставить пользователю максимальный набор услуг.

 

Библиографический список

    1. Mouly M., Pautet M. B. The GSM System for Mobile Communications. 1992.
    2. Громаков Ю. А. Сотовые системы подвижной радиосвязи. Технологии электронных коммуникаций. Т. 48. — М.: " Эко-Трендз", 1994.
    3. Mehrotra A. Cellular Radio: Analog and Digital Systems. Artech House. — Boston – London, 1994.
    4. Громаков Ю. А. Структура TDMA кадров и формирование сигналов в стандарте GSM // Электросвязь. № 10. 1993. С. 9 – 12.
    5. Heger W. GSM vs. CDMA. GSM Global System for Mobile Communications. Proceedings of the GSM Promotion Seminar 1994. GSM MoU Group in Cooperation with ETSI GSM Members. 15 December, 1994.

Архитектура сотовых сетей связи и сети абонентского доступа

Введение

В данном курсовом проекте необходимо рассмотреть вопросы планирования и взаимодействия сетей сотовой связи. Это будет проиллюстрировано на примерах: построение сетей пикосотовой архитектуры будет рассмотрено на примере стандарта DECT; построение сетей микросотовой архитектуры будет рассмотрено на примере стандарта GSM-1800; построение сетей макросотовой архитектуры будет рассмотрено на примере стандарта GSM-900.

Также будут рассмотрены сети широкополосного абонентского доступа.


Поделиться:



Популярное:

  1. IDEF1X - методология моделирования данных, основанная на семантике, т.е. на трактовке данных в контексте их взаимосвязи с другими данными.
  2. II. Организация локальной вычислительной сети.
  3. IV. Каков процент ваших друзей в соцсети - это люди, с которыми вы никогда не общались в реальности?
  4. А потом он обратился к ним с увещанием в связи с тем, что они смеялись, когда кто-нибудь испускал ветры, и сказал: «Почему некоторые из вас смеются над тем, что делают и сами?»
  5. А теперь предлагаю вам вернуться к главе 3 – к списку других видов посреднической деятельности. Думаю, вас посетит множество новых идей.
  6. Активность восприятия и значение обратной связи
  7. АЛМАТИНСКИЙ ИНСТИТУТ ЭНЕРГЕТИКИ И СВЯЗИ
  8. Анализ мотивации трудовой деятельности в УП «Новороссийские горэлектросети»
  9. Анализ функциональной связи между затратами, объемом продаж и прибылью. Определение безубыточного объема продаж и зоны безопасности предприятия
  10. Анализ функциональной связи между издержками и объемом производства продукции
  11. АППАРАТУРА ВНУТРЕННЕЙ СВЯЗИ И КОММУТАЦИИ Р-174
  12. Аппаратура внутренней связи, сигнализации и управления судном. Техническое обслуживание


Последнее изменение этой страницы: 2017-03-03; Просмотров: 2086; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.078 с.)
Главная | Случайная страница | Обратная связь