Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Теорема (Кронекера–Капелли).
Система линейных уравнений совместна тогда и только тогда, когда ранг основной матрицы системы равен рангу её расширенной матрицы:
Для совместной системы линейных уравнений вопрос о её определённости или неопределённости решается с применением следующих теорем. Теорема 1 Если ранг основной матрицы совместной системы равен числу неизвестных, то система является определённой Теорема 2 Если ранг основной матрицы совместной системы меньше числа неизвестных, то система является неопределённой. Таким образом, из сформулированных теорем вытекает способ исследования систем линейных алгебраических уравнений. Пусть n – количество неизвестных, Тогда: 1) при система несовместна; 2) при система совместна, причём, если , система определённая; если же , система неопределённая. Определение Базисным решением неопределённой системы линейных уравнений называют такое её решение, в котором все свободные неизвестные равны нулю. Пример. Исследовать систему линейных уравнений
и в случае неопределённости системы найти её базисное решение. Вычислим ранги основной и расширенной матриц данной системы уравнений, для чего приведём расширенную (а вместе с тем и основную) матрицу системы к ступенчатому виду:
Вторую строку матрицы сложим с её первой строкой, умноженной на третью строку – с первой строкой, умноженной на а четвёртую строку – с первой, умноженной на получим матрицу
К третьей строке этой матрицы прибавим вторую строку, умноженную на а к четвёртой строке – первую, умноженную на Врезультате получим матрицу
удаляя из которой третью и четвёртую строки получим ступенчатую матрицу
Таким образом, Следовательно, данная система линейных уравнений совместна, а поскольку величина ранга меньше числа неизвестных, система является неопределённой. Полученной в результате элементарных преобразований ступенчатой матрице соответствует система уравнений
Неизвестные и являются главными, а неизвестные и свободными. Придавая свободным неизвестным нулевые значения, получим базисное решение данной системы линейных уравнений:
Думаю с этим все понятно.
Билет 1. Вектор. Понятия Ответ: в геометрическом смысле вектор — это направленный отрезок, обычно определяемый точками своего начала и конца. Так или иначе вектором - называется отрезок, имеющий определенную длину и направление Основные понятия 1) Модулем вектора |a| в геометрии называется его длина 2) Коллинеарными называются такие вектора, векторное произведение которых равно нулю. Это параллельные вектора. Коллинеарные вектора могут быть сонаправленными или встречными, то есть направленными строго в противоположные стороны. 3) Ортогональными (перпендикулярными) называются такие вектора, скалярное произведение которых равно нулю. Для любого вектора все вектора, лежащие в любой перпендикулярной ему плоскости, будут ортогональны. 4) Нулевым является вектор, имеющий нулевую длину, то есть тот, у которого координаты начала и конца строго совпадают. В связи с этим обычно нельзя говорить о направлении такого вектора, поэтому его считают не имеющим направления. 5) Компланарными называются вектора, которые приведены к одному началу и лежат в одной плоскости. Если хотя бы один из 3 векторов – нулевой, то три вектора тоже компланарны. 6) Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. 7) Косинус угла между векторами равен скалярному произведению векторов, поделенному на произведение модулей векторов. 2. Сумма векторов и произведение вектора на число. Ответ: начнем с простого, чтобы сложить два вектора, достаточно сложить каждую из его координат. Т.е. если есть два вектора с координатами: a (x y z) u b (x1 y1 z1) то их суммой будет: (x+x1; y+y1; z+z1). С этим ясно, умножение вектора на число тоже довольно просто. Если есть вектор a(x y z) и число b=4, то просто домножаем КАЖДУЮ координату на это число. 3. Условие коллинеарности векторов: Ответ: 1) Два вектора коллинеарны, если их отношения равны 2) Два вектора коллинеарны, если их векторное пр-е равно нулю. Пример внизу. 4. Свойства линейных операций над векторами Сложение векторов коммутативно: . Сложение векторов ассоциативно: . Прибавление нулевого вектора к любому не меняет последнего: . Для любого вектора существует вектор такой, что или . Умножение вектора на число ассоциативно: . Умножение вектора на число дистрибутивно относительно сложения чисел: . Дистрибутивность умножения векторов относительно сложения Умножение вектора на число дистрибутивно относительно сложения векторов: . Очевидно, умножение на единицу не меняет вектор: .
Билет 7 1. Базис и система координат на плоскости и в пр-ве Ответ: Базисом плоскости называется пара линейно независимых (неколлинеарных) векторов , взятых в определённом порядке, при этом любой вектор плоскости является линейной комбинацией базисных векторов. Любой вектор плоскости единственным образом раскладывается по базису : Также говорят, что вектор представлен в виде линейной комбинации базисных векторов. То есть, выражение называют разложением вектора по азису или линейной комбинацией базисных векторов. Иными словами, говоря о разложении по базису мы подразумеваем какие-то коэффициенты, которые соответствуют векторам.
1.1 Система координат на плоскости
Ответ: Когда говорят о прямоугольной системе координат, то чаще всего имеют в виду начало координат, координатные оси и размерность по осям. Прямоугольную систему координат вполне можно определить через ортонормированный базис . И это почти так. Формулировка звучит следующим образом: Точка плоскости, которая называется началом координат, и ортонормированный базис задают декартову прямоугольную систему координат плоскости. То есть, прямоугольная система координат однозначно определяется единственной точкой и двумя единичными ортогональными векторами . Думаю, всем понятно, что с помощью точки (начала координат) и ортонормированного базиса ЛЮБОЙ ТОЧКЕ плоскости и ЛЮБОМУ ВЕКТОРУ плоскости можно присвоить координаты. Образно говоря, «на плоскости всё можно пронумеровать». Обязаны ли координатные векторы быть единичными? Нет, они могут иметь произвольную ненулевую длину. Рассмотрим точку и два ортогональных вектора произвольной ненулевой длины. Собственно пример данной системы, всем известной:
1.2. Система координат в пр-ве Ответ: Базисом трёхмерного пространства называется тройка линейно независимых (некомпланарных) векторов , взятых в определённом порядке, при этом любой вектор пространства единственным образом раскладывается по данному базису , где – координаты вектора в данном базисе Напоминаю, также можно сказать, что вектор представлен в виде линейной комбинации базисных векторов. Понятие системы координат вводится точно так же, как и для плоского случая, достаточно одной точки и любых трёх линейно независимых векторов: Точка пространства, которая называется началом координат, и некомпланарны е векторы , взятые в определённом порядке, задают аффинную систему координат трёхмерного пространства:
Точка пространства, которая называется началом координат, и ортонормированный базис задают декартову прямоугольную систему координат пространства .: 2. Геометрические и алгебраические проекции вектора на ось
3. Координаты вектора на плоскости и в пространстве Начну с векторов на плоскости. Изображаем декартову с.к. и откладываем единичные вектора. Векторы и ортогональны. Ортогональны = Перпендикулярны. Обозначение: ортогональность векторов записывают привычным значком перпендикулярности, например: . Рассматриваемые векторы называют координатными векторами или ортами. Данные векторы образуют базис на плоскости. Иногда построенный базис называют ортонормированным базисом плоскости: «орто» – потому что координатные векторы ортогональны, прилагательное «нормированный» означает единичный, т.е. длины векторов базиса равны единице. Обозначение: базис обычно записывают в круглых скобках, внутри которых в строгой последовательности перечисляются базисные векторы, например: . Координатные векторы нельзя переставлять местами. Ответ: Любой вектор плоскости единственным образом выражается в виде: Координаты на плоскости. Теперь рассмотрим векторы в трехмерном пространстве, здесь практически всё так же, только добавится ещё одна координата. Это есть ортонормированный базис трехмерного пространства и прямоугольная система координат, единичные векторы данного базиса попарно ортогональны: и . Ось наклонена под углом 45 градусов только для того, чтобы складывалось визуальное впечатление пространства. И в данном случае координаты отдельных векторов будут записывать в соответствии с i j k, и вместо отсутствующих координат будут ставить нули. Например 3j – коорд. Y => вектор b (0 3 0).
Билет 8 1. Направляющие косинусы вектора Ответ: это косинусы углов, которые вектор образует с положительными полуосями координат. Направляющие косинусы однозначно задают направление вектора. Если вектор имеет длину 1, то его направляющие косинусы равны его координатам. Следовательно вывод: направление вектора в пространстве определяется углами, которые вектор образует с осями Косинусы этих углов называются направляющими косинусами вектора: , , .
Связь между ними: Это обязательное условие! А находят их так: Далее, это орт, он же единичный вектор который находится ТОЧНО так же, как и направляющие косинусы, разве что вместо cos пишем v с галочкой наверху. 2. Сумму векторов и произведение вектора на число находили выше, хуй знает почему в этом билете тот же вопрос.
Билет 9 Ответ: 1. Нахождение координат вектора, зная начало и конец + координаты середины: 2. Расстояние между двумя точками:
3. Деление в заданном отношении Очень простой вопрос, но тем не менее:
Билет 10
Билет 11 Три некомпланарных вектора a, b и с, взятые в указанном порядке, образуют правую тройку, если с конца третьего вектора с кратчайший поворот от первого вектора а ко второму вектору b виден совершающимся против часовой стрелки, и левую, если по часовой (см. рис. 16). Векторным произведением вектора а на вектор b называется вектор с, который: 1. Перпендикулярен векторам a и b, т. е. с^а и с^b; 2. Имеет длину, численно равную площади параллелограмма, построенного на векторах а иb как на сторонах (см. рис. 17), т. е. 3.Векторы a, b и с образуют правую тройку.
|
Последнее изменение этой страницы: 2017-03-14; Просмотров: 309; Нарушение авторского права страницы