Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


БЕСКОНЕЧНО МАЛЫЕ ФУНКЦИИ И ИХ ОСНОВНЫЕ СВОЙСТВА



Функция y=f(x) называется бесконечно малой при x→ a или при x→ ∞, если или , т.е. бесконечно малая функция – это функция, предел которой в данной точке равен нулю.

Примеры.

Функция f(x)=(x-1)2 является бесконечно малой при x→ 1, так как (см. рис.).

Функция f(x) = tgx – бесконечно малая при x→ 0.

f(x) = ln (1+x)– бесконечно малая при x→ 0.

f(x) = 1/x– бесконечно малая при x→ ∞.

Установим следующее важное соотношение:

Теорема. Если функция y=f(x) представима при x→ aв виде суммы постоянного числа b и бесконечно малой величины α (x): f (x)=b+ α (x) то .

Обратно, если , то f (x)=b+α (x), где a(x) – бесконечно малая при x→ a.

Доказательство.

Докажем первую часть утверждения. Из равенства f(x)=b+α (x) следует |f(x) – b|=| α |. Но так как a(x) – бесконечно малая, то при произвольном ε найдется δ – окрестность точки a, при всех x из которой, значения a(x) удовлетворяют соотношению |α (x)|< ε. Тогда |f(x) – b|< ε. А это и значит, что .

Если , то при любом ε > 0 для всех х из некоторой δ – окрестность точки a будет |f(x) – b|< ε. Но если обозначимf(x) – b= α , то |α (x)|< ε, а это значит, что a – бесконечно малая.

Рассмотрим основные свойства бесконечно малых функций.

Теорема 1. Алгебраическая сумма двух, трех и вообще любого конечного числа бесконечно малых есть функция бесконечно малая.

Доказательство. Приведем доказательство для двух слагаемых. Пусть f(x)=α (x)+β (x), где и . Нам нужно доказать, что при произвольном как угодно малом ε > 0 найдется δ > 0, такое, что для x, удовлетворяющих неравенству |x – a|< δ , выполняется |f(x)|< ε.

Итак, зафиксируем произвольное число ε > 0. Так как по условию теоремы α (x) – бесконечно малая функция, то найдется такое δ 1> 0, что при |x – a|< δ 1 имеем |α (x)|< ε /2. Аналогично, так как β (x) – бесконечно малая, то найдется такое δ 2> 0, что при |x – a|< δ 2 имеем | β (x)|< ε /2.

Возьмем δ =min{ δ 1, δ 2}.Тогда в окрестности точки a радиуса δ будет выполняться каждое из неравенств |α (x)|< ε /2 и | β (x)|< ε /2. Следовательно, в этой окрестности будет

|f(x)|=| α (x)+β (x)| ≤ |α (x)| + | β (x)| < ε /2 + ε /2= ε,

т.е. |f(x)|< ε, что и требовалось доказать.

Теорема 2. Произведение бесконечно малой функции a(x) на ограниченную функцию f(x) при x→ a (или при x→ ∞ ) есть бесконечно малая функция.

Доказательство. Так как функция f(x) ограничена, то существует число М такое, что при всех значениях x из некоторой окрестности точки a|f(x)|≤ M. Кроме того, так как a(x) – бесконечно малая функция при x→ a, то для произвольного ε > 0 найдется окрестность точки a, в которой будет выполняться неравенство |α (x)|< ε /M. Тогда в меньшей из этих окрестностей имеем | α f|< ε /M= ε. А это и значит, что af – бесконечно малая. Для случая x→ ∞ доказательство проводится аналогично.

Из доказанной теоремы вытекают:

Следствие 1. Если и , то .

Следствие 2. Если и c=const, то .

Теорема 3. Отношение бесконечно малой функции α (x) на функцию f(x), предел которой отличен от нуля, есть бесконечно малая функция.

Доказательство. Пусть . Тогда 1/f(x) есть ограниченная функция. Поэтому дробь есть произведение бесконечно малой функции на функцию ограниченную, т.е. функция бесконечно малая.

 

СООТНОШЕНИЕ МЕЖДУ БЕСКОНЕЧНО МАЛЫМИ

И БЕСКОНЕЧНО БОЛЬШИМИ ФУНКЦИЯМИ

Теорема 1. Если функция f(x) является бесконечно большой при x→ a, то функция 1/f(x) является бесконечно малой при x→ a.

Доказательство. Возьмем произвольное число ε > 0 и покажем, что при некотором δ > 0 (зависящим от ε ) при всех x, для которых |x – a|< δ , выполняется неравенство , а это и будет означать, что 1/f(x) – бесконечно малая функция. Действительно, так как f(x) – бесконечно большая функция при x→ a, то найдется δ > 0 такое, что как только |x – a|< δ , так |f(x)|> 1/ ε. Но тогда для тех же x .

Примеры.

Ясно, что при x→ +∞ функция y=x2+1 является бесконечно большой. Но тогда согласно сформулированной выше теореме функция – бесконечно малая при x→ +∞ , т.е. .

.

Можно доказать и обратную теорему.

Теорема 2. Если функция f(x) - бесконечно малая при x→ a (или x→ ∞ ) и не обращается в нуль, то y=1/f(x) является бесконечно большой функцией.

 

Примеры.

.

.

, так как функции и - бесконечно малые при x→ +∞ , то , как сумма бесконечно малых функций есть функция бесконечно малая. Функция же является суммой постоянного числа и бесконечно малой функции. Следовательно, по теореме 1 для бесконечно малых функций получаем нужное равенство.

Таким образом, простейшие свойства бесконечно малых и бесконечно больших функций можно записать с помощью следующих условных соотношений: A≠ 0

.

 

 


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 282; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.017 с.)
Главная | Случайная страница | Обратная связь