Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Функции, заданные параметрически и их дифференцирование.



До сих пор функция записывалась в явном виде y= f(x) и в неявном F(x, y)=0. Но существует еще третий вид аналитического представления функции - это представление её в па раметрической форме в виде двух уравнений

где t - вспомогательная переменная, называемая параметром.
Заметим, что функция может быть представлена в параметрической форме различными способами.
Например, функция, записанная в неявном виде x2 + y2 = 1 может быть представлена в явном виде: и в параметрической форм е:


Заметим, что x2 + y2 = 1 есть уравнение окружности единичного радиуса с центром в начале координат.
В первом параметрическом представлении уравнения x2 + y2 = 1 параметр t изменяется от -1 до +1 и равен абциссе подвижной точки окружности, во втором случае параметр t изменяется от 0 до 2p и равен углу, образованному радиусом подвижной точки и осью Ox.
Если функция задана в явном виде y=f(x), то всегда можно записать её в неявном виде y-f(x)=0, а также в параметрической форме


От вида F(x, y)=0 не всегда возможно перейти к виду y=f(x) или x=j (y), так как уравнение F(x, y)=0 может оказаться неразреш имым относительно yили x .
Лего перейти от параметрического представления функции к уравнению вида y=f(x). Для этого из первого уравнения x=x(t) нужно найти t=t(x), если конечно это возможно, и подставить его во второе уравнение y=y(t)

y=y[t(x)]=f(x)

От параметрического представления функции к уравнению вида F(x, y)=0 можно прийти путем исключения параметра t, если это возможно.
Уравнения y=f(x) и F(x, y)=0 служат различными аналитическими представлениями одной и той же функции F[x, f(x)]=0.
Параметрические уравнения

и уравнение F(x, y)=0 представляют одну и ту же функцию, если F(x(t), y(t))=0.
Наконец, параметрические уравнения определяют ту же функцию, что и уравнение y=f(x), если

y(t)=f [ x(t) ].

Найдем производную функции y по x в случае, когда она задана в параметрическом виде. Для этого будем рассматривать t как функцию от x. То естьt=t(x). Тогда y=y[t(x)].
Продифференцируем y как сложную функцию от x, т.е. по формуле

и применим формулу, связывающую производные обратных функций:

Введя обозначения ,

получим

 

Теперь найдем вторую производную от функции, заданной в параметрической форме. Из предидущего уравнения и определения второй производной следует, что

Но

 

Следовательно

Где

Гиперболические функции. Их свойства и дифференцирование.

В приложениях показательные функции часто встречаются в комбинациях

Вследствие этого эти комбинации получили особые названия. Первую называют гиперболическим косинусом, обозначая его через ch x (cos hyp х), а вторую - гиперболическим синусом, обозначая его через sh x (sin hyp x). Таким образом имеем

Эти обозначения и названия введены по аналогии с известными формулами Эйлера для тригонометрических функций

Исходя из равенств, определяющих sh x и ch x, можно развить теорию гиперболических функций. Формулы ее весьма схожи с формулами обыкновенной тригонометрии. Нетрудно проверить, что

ch (- х) = ch х, sh (- х) = - sh x, ch xi = cos x, sh xi = i sin x, ch2 x - sh2 x = 1.

Рассматривают также гиперболические тангенс и котангенс, определяя их с помощью равенств


Теорема сложения для гиперболических функций имеет вид

ch (x + y) = ch x·ch у + sh x·sh у,
sh (x + y) = sh х·ch у + sh y·ch x.

Нетрудно видеть, что

sh 2х = 2 sh х·ch x, ch 2x = ch2x + sh2 x,
.

В приложениях приходится рассматривать и обратные гиперболические функции. Если положим ch x = u и sh v = v, то x = Arch u = = arsh v. Здесь Ar происходит от латинского слова «area» Из этих двух функций первая двузначна, а вторая однозначна. Решая уравнения

относительно ех, находим

,

откуда

.

Следовательно,

.

Впервой из этих двух формул допустимы перед корнем оба знака. Во второй - только один, ибо при отрицательном знаке логарифм перестает быть вещественным.

 

Дифференцируемость функции.

Дифференцируемость функции

Операция нахождения производной называется дифференцированием функции. Функция называетсядифференцируемой в некоторой точке, если она имеет в этой точке конечную производную, идифференцируемой на некотором множестве, если она дифференцируема в каждой точке этого множества.

В силу геометрического смысла производной следующие два свойства равносильны друг другу: 1) функция дифференцируема при ; 2) график этой точки имеет касательную в точке , не параллельную оси ординат (т.е. с конечным угловым коэффициентом).

 

Теорема. Если функция дифференцируема в некоторой точке, она непрерывна в этой точке.

Доказательство. Пусть в некоторой точке области определения функции существует конечный предел

Запишем приращение функции в виде

и найдём

Следовательно, если , то и , а это означает, что функция непрерывна в рассматриваемой точке.

 

Таким образом, из дифференцируемости функции вытекает её непрерывность. Обратная теорема неверна, так как существуют непрерывные функции, которые в некоторых точках являются недифференцируемыми.

 

Пример 3. Функция

непрерывна в точке , но не дифференцируема в этой точке, так как в ней график не имеет касательной. (рис. 79).

 

Из сказанного выше следует, что непрерывность в точке x является необходимым, но не достаточным условием дифференцируемости функции в этой точке, так как из непрерывности функции в точке не всегда следует дифференцируемость в этой точке.

 


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 562; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.021 с.)
Главная | Случайная страница | Обратная связь