Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Законы взаимосвязи массы и энергии
Найдем кинетическую энергию релятивистской частицы (материальной точки). Известно, что приращение кинетической энергии материальной точки на элементарном перемещении равно работе силы на этом перемещении: dT=dA или . (7.21) Учитывая, что , и, подставив в (7.21) выражение (7.18), получим . Преобразовав данное выражение с учетом того, что , и формулы (7.17), придем к выражению , (7.22) т.е. приращение кинетической энергии частицыпропорционально приращению ее массы. Так как кинетическая энергия покоящейся частицыравна нулю, а ее масса равна массе покоя m0, то, проинтегрировав (7.22) получим , (7.23) или кинетическая энергия релятивистской частицыимеет вид . (7.24) Выражение при скоростях < < c переходит в классическое: T= . Разлагая в ряд при < < c, правомерно пренебречь членами второго порядка малости. А. Эйнштейн обобщил положение (7.22), предположив, что оно справедливо не только для кинетической энергии материальной точки, но и для полной энергии, а именно: любое изменение массы m сопровождается изменением полной энергии материальной точки, . (7.25) Отсюда Эйнштейн пришел к универсальной зависимости между полной энергией тела Е и его массой m: . (7.26) Уравнение (7.25), равно как и (7.26), выражает фундаментальный закон природы – закон взаимосвязи (пропорциональности) массы и энерги: полная энергия системы равна произведению ее массы на квадрат скорости света в вакууме. В полную энергию Е не входит потенциальная энергия тела во внешнем поле. Закон (7.26) можно, учитывая выражение (7.23), записать в виде Е=mос2 +Т, откуда следует, что покоящееся тело (Т=0) также обладает энергией E0=m0c2, называемой энергией покоя. Классическая механика энергию покоя E0 не учитывает, считая, что при = 0 энергия покоящегося тела равна нулю. В силу однородности времени в релятивистской механике, как и в Из формул (7.26) и (7.20) найдем релятивистское соотношение меж- , . (7.27) Возвращаясь к уравнению (7.26), отметим еще раз, что оно имеет универсальный характер. Оно применимо ко всем формам энергии, т.е. можно утверждать, что с энергией, какой бы формы она ни была, связана масса (7.28) и, наоборот, со всякой массой связана определенная энергия (7.26). Чтобы охарактеризовать прочность связи и устойчивость системы Энергия связи системы , (7.29) Закон взаимосвязи массы и энергии блестяще подтвержден экспериментом о выделении энергии при протекании ядерных реакций. Он широко используется для расчета энергетических эффектов при ядерных реакциях и превращениях элементарных частиц. Рассматривая выводы специальной теории относительности, видим, что она, как, впрочем, и любые крупные открытия, потребовала пересмотра многих установившихся и ставших привычными представлений. Масса тела не остается постоянной величиной, а зависит от скорости тела; длина тел и длительность событий не являются абсолютными величинами, а носят относительный характер; наконец, масса и энергия оказались связанными друг с другом, хотя они и являются качественно различными свойствами материи. Эту ломку укоренившихся представлений некоторые буржуазные философы пытались использовать для распространения двух разновидностей идеализма: энергетизма и философского релятивизма. Первая из этих теорий рассматривала возможность преобразования массы в энергию и, наоборот, энергии в массу, доказывая " эквивалентность материи и «энергии». Закон взаимосвязи массы и энергии, действительно, утверждает, что любые превращения энергии тела сопровождаются изменениями его массы, однако при этом масса не " переходит в энергию". Закон взаимосвязи массы и энергии является подтверждением неразрывности материи и движения - одного из основных положений диалектического материализма. Основной вывод теории относительности сводится к тому, что пространство и время органически связаны и образуют единую форму существования материи – пространство – время. Только поэтому пространственно-временной интервал между двумя событиями является абсолютным, в то время как пространственные и временные промежутки между этими событиями относительны. Следовательно, вытекающие из преобразований Лоренца следствия являются выражением объективно существующих пространственно-временных соотношений движущейся материи.
II. ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ Молекулярная физика и термодинамика - разделы физики, в которых изучаются макроскопические процессы в телах, связанные с огромным числом содержащихся в телах атомов и молекул. Для исследования этих процессов применяют два качественно различных и взаимно дополняющих друг друга метода: статистический (молекулярно–кинетический) и термодинамический. Первый лежит в основе молекулярной физики, второй - термодинамики. Молекулярная физика – раздел физики, изучающий строение и свойства вещества исходя из молекулярно – кинетических представлений, основыва-ющихся на том, что все тела состоят из молекул, находящихся в непрерывном хаотическом движении. Идея об атомном строении вещества высказана древнегреческим философом Демокритом (460-370 гг. до н.э.). Атомистика возрождается вновь лишь в XVII в. и развивается в работах М.В.Ломоносова, взгляды которого на строение вещества и тепловые явления были близки к современным. Строгое развитие молекулярной теории относится к середине XIX в. и связано с работами немецкого физика Р.Клаузиуса, английского физика Дж.Максвелла и австрийского физика Л.Больцмана. Процессы, изучаемые молекулярной физикой, являются результатом совокупного действия огромного числа молекул. Законы поведения огромного числа молекул, являясь статистическими закономерностями, изучаются с помощью статистического метода. Этот метод основан на том, что свойства макроскопической системы в конечном счете являются свойствами частиц системы, особенностямиих движения и усредненными значениями динамических характеристик этих частиц (скорости, энергии и т.д.). Например, температура тела определяется скоростью беспорядочного движения его молекул, но т.к. в любой момент времени разные молекулы имеют различные скорости, то она может быть выражена только через среднее значение скорости движения молекул. Нельзя говорить о температуре одной молекулы. Таким образом, макроскопические характеристики тел имеют физический смысл лишь в случае большого числа молекул. Термодинамика – раздел физики, изучающий общие свойства макроско-пических систем, находящихся в состоянии термодинамического равновесия, и процессы перехода между этими состояниями. Термодинамика не рассматривает микропроцессы, которые лежат в основе этих превращений. Этим термодинамический метод отличается от статистического. Термодинамика базируется на двух началах – фундаментальных законах, установленных в результате обобщения опытных данных. Область применения термодинамики значительно шире, чем молекулярно-кинетической теории, ибо нет таких областей физики и химии, в Термодинамика имеет дело с термодинамической системой – совокупностью макроскопических тел, которые взаимодействуют и обмениваются энергией как между собой, так и с другими телами (внешней средой). Основа термодинамического метода - определение состояния термодинамической системы. Состояние системы задается термодинамическими параметрами (параметрами состояния) – совокупностью физических величин, характеризующих свойства термодинамической системы. Обычно в качестве параметров состояния выбирают температуру, давление и объем. Параметры состояния системы могут изменяться. Любое изменение в термодинамической системе, связанное с изменением хотя бы одного из ее термодинамических параметров называется термодинамическим процессом. Макроскопическая система находится в термодинамическом равновесии, если ее состояние с течением времени не меняется (предполагается, что внешние условия рассматриваемой системы при этом не изменяются).
МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ ИДЕАЛЬНОГО ГАЗА |
Последнее изменение этой страницы: 2017-03-14; Просмотров: 895; Нарушение авторского права страницы