Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Периодическая система химических элементов Менделеева.



Периоди́ ческая систе́ ма хими́ ческих элеме́ нтов ( табли́ ца Менделе́ ева ) — классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра.

Система является графическим выражением периодического закона, установленного русским химиком Д. И. Менделеевым в 1869 году. Её первоначальный вариант был разработан Д. И. Менделеевым в 1869—1871 годах и устанавливал зависимость свойств элементов от их атомного веса.

Наиболее распространёнными являются 3 формы таблицы Менделеева: «короткая» (короткопериодная), «длинная» (длиннопериодная) и «сверхдлинная». В «сверхдлинном» варианте каждый период занимает ровно одну строчку. В «длинном» варианте лантаноиды и актиноиды вынесены из общей таблицы, делая её более компактной. В «короткой» форме записи, в дополнение к этому, четвёртый и последующие периоды занимают по 2 строчки; символы элементов главных и побочных подгрупп выравниваются относительно разных краёв клеток.

Полосы равной толщины и равного наклона.

Полосы равной толщины - один из эффектов оптики тонких слоев. Наблюдаются непосредственно на поверхности прозрачного слоя переменной толщины.

П. Р. Т. обусловлены интерференцией света, отражённого от передней и задней границы слоя. При этом максимумы и минимумы освещённости полос совпадают с линиями на поверхности слоя, по которым разность хода интерферирующих лучей одинакова. П. Р. Т. обусловливают радужную окраску тонких плёнок (мыльных пузырей, масляных и бензиновых пятен); их используют для определения микрорельефа тонких пластинок и плёнок.

 

Полосы равного наклона - система чередующихся светлых и тёмных полос, наблюдаемая на экране при освещении прозрачного слоя постоянной толщины (плоскопараллельной пластинки) непараллельным пучком монохроматического излучения.

21) ДАВЛЕНИЕ СВЕТА

Впервые гипотеза о существовании светового давления была высказана И. Кеплером в XVII веке для объяснения поведения хвостов комет при пролете их вблизи Солнца. В 1873 г. Максвелл дал теорию давления света в рамках своей классической электродинамики. Экспериментально световое давление впервые исследовал П. Н. Лебедев в 1899 г.

В отсутствие рассеяния

Для вычисления давления света при нормальном падении излучения и отсутствии рассеяния можно воспользоваться следующей формулой:

где — количество лучистой энергии, падающей нормально на 1 м² поверхности за 1 с, т. е. интенсивность падающего излучения; — скорость света, — коэффициент пропускания, — коэффициент отражения.

Давление солнечного света на перпендикулярную свету зеркальную поверхность, находящуюся в космосе в районе Земли, легко рассчитать через плотность потока солнечной (электромагнитной) энергии на расстоянии одной астрономической единицы от Солнца (солнечная постоянная). Оно составляет 4, 6 мкН/м² = 4, 6× 10− 11[источник не указан 317 дней] атм (см.солнечная постоянная).

Если свет падает под углом к нормали, то давление можно выразить формулой:

где — объёмная плотность энергии излучения, — коэффициент пропускания, — коэффициент отражения, — единичный вектор в направлении падающего пучка, — единичный вектор в направлении отражённого пучка.

Например, тангенциальная составляющая силы давления света на единичную площадку будет равна:

Нормальная составляющая силы давления света на единичную площадку будет равна:

Отношение нормальной и тангенциальной составляющих равно:

При рассеянии

Если рассеяние света поверхностью и при пропускании, и при отражении подчиняется закону Ламберта, то при нормальном падении давление будет равно:

где — интенсивность падающего излучения, — коэффициент диффузного пропускания, — альбедо.

 

22) Соотношение квантовой и классической физики

Класси́ ческая фи́ зика — физика до появления квантовой теории и теории относительности. Основы классической физики были заложены в Эпоху Возрождения рядом учёных, из которых особенно выделяют Ньютона — создателя классической механики.

Классическая физика основана на следующих принципах:

§ причины однозначно определяют следствия (детерминизм);

§ пространство и время являются абсолютными — это означает, что они никак не зависят от материи, заполняющей пространство и от её движения, при этом результаты измерения пространственных и временны́ х отрезков не зависят от выбранной системы отсчёта, в частности, от скорости движения измеряемого объекта относительно наблюдателя;

§ изменения любых величин, характеризующих физическую систему, являются непрерывными — это значит, что при переходе от одного фиксированного состояния к другому физическая система проходит через бесконечное множество переходных состояний, в которых все физические параметры системы принимают промежуточные значения между значениями в начальном и конечном состояниях.

Фундаментальными теориями классической физики являются Классическая механика, Термодинамика и статистическая физика, Классическая электродинамика.

В 1900 г. немецкий физик Макс Планк предлагает Квантовую теорию излучения, согласно которой свет излучается не непрерывно (как это предполагается классической теорией), а дискретно — порциями, которые Планк назвал квантами. Несмотря на парадоксальность этой теории (в которой излучение света рассматривался, как волновой процесс, и, в то же время, как поток частиц — квантов), она хорошо описывала форму спектра теплового излучения твёрдых и жидких тел.
В 1905 г. Альберт Эйнштейн, исходя из предположения квантовой природы света, даёт математическое описание явления фотоэффекта, при этом становится объяснимой природа красной границы фотоэффекта. (Именно за эту работу, а не за Теорию относительности, Эйнштейну в 1921 г. присуждается Нобелевская премия.)
В 1926 г. Нильс Бор предлагает Квантовую теорию атома, согласно которой электроны, составляющие электронную оболочку атома, могут находиться только в счётном множествесостояний (орбит) с фиксированными параметрами, а переходы с орбиты на орбиту происходят при поглощении или излучении квантов света не непрерывно, а скачкообразно, без промежуточных состояний (См.Постулаты Бора). Таким образом, квантовый принцип, помимо света, распространялся и на движение электрона. Эта теория хорошо объясняла линейчатый спектр излучения и поглощения электромагнитных волн газами, а кроме того, позволяла понять физическую природу химического соединения, свойств химических элементов, иПериодического закона Менделеева.
В дальнейшем квантовая механика становится главным инструментом теоретической физики при описании процессов микромира. В процессе развития квантовой механики произошёл отказ от жёсткого детерминизма классической физики, и принят принцип неопределённости Гейзенберга

23) Просветляющая оптика

Просветле́ ние о́ птики — это нанесение на поверхность линз, граничащих с воздухом, тончайшей плёнки или нескольких плёнок одна поверх другой. Это необходимо для увеличения светопропускания оптической системы. Показатель преломления таких плёнок меньше показателя преломления стёкол линз.

Просветляющие плёнки уменьшают светорассеяние и отражение падающего света от поверхности оптического элемента, соответственно улучшая светопропускание системы и контраст оптического изображения. Просветлённый объектив требует бережного обращения, так как плёнки, нанесенные на поверхность линз, легко повредить.

Однослойное просветление. Толщина просветляющего слоя (например, кремниевой кислоты) равняется 1/4 длины световой волны. В этом случае лучи, отражённые от её наружной и внутренней сторон, погасятся вследствие интерференции и их интенсивность станет равной нулю. Для наилучшего эффекта показатель преломления просветляющей плёнки должен равняться квадратному корню показателя преломления оптического стекла линзы. Наиболее подходящим материалом для просветляющей пленки является фторид бария, обладающий весьма низким (n=1, 38) показателем преломления. Однако, фторид бария растворим в воде и требует нанесения защитного покрытия.

Отражательная способность стекла, просветленного таким способом, сильно зависит от длины волны, что является основным недостатком однослойного просветления. Минимум отражательной способности соответствует длине волны λ =4d·n, где d — толщина пленки, n — ее показатель преломления, В настоящее время однослойное просветление часто используется для лазерной оптики.

Многослойное просветляющее покрытие представляет собой последовательность чередующихся слоев (их число достигает 15 и более) из двух (или более) материалов с различными показателями преломления. Многослойные просветляющие покрытия характеризуются низкими потерями на отражение (узкополосные покрытия для лазерной оптики с отражательной способностью около 0, 2 % и менее, широкополосные — до 0, 5 %). Основное преимущество многослойного просветления применительно к фотографической и наблюдательной оптике — незначительная зависимость отражательной способности от длины волны в пределах видимого спектра, что существенно уменьшает искажения цвета. Отражения от поверхности линз с многослойным просветлением в зависимости от качества имеют различные оттенки зеленого и фиолетового цвета, вплоть до очень слабых серо-зеленоватых у объективов последних годов выпуска.

24) Корпускулярно-волновая природа частиц

Корпускуля́ рно-волново́ й дуали́ зм — принцип, согласно которому любой объект может проявлять как волновые, так и корпускулярные свойства. Был введён при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире. Французский ученый Луи де Бройль (1892—1987), осознавая существующую в природе симметрию и развивая представления о двойственной корпускулярно-волновой природе света, выдвинул в 1923 году гипотезу об универсальности корпускулярно-волнового дуализма. Он утверждал, что не только фотоны, но и электроны и любые другие частицы материи наряду скорпускулярными обладают также волновыми свойствами. Согласно де Бройлю, с каждым микрообъектом связываются, с одной стороны, корпускулярные характеристики — энергия E и импульс p, а с другой стороны — волновые характеристики —частота и длина волны.

Де Бройль выдвинул идею о том, что волновой характер распространения, установленный для фотонов, имеет универсальный характер. Он должен проявляться для любых частиц, обладающих импульсом p. Все частицы, имеющие конечный импульс p, обладают волновыми свойствами, в частности, подвержены интерференции и дифракции.

Формула де Бройля устанавливает зависимость длины волны λ, связанной с движущейся частицей вещества, от импульса p частицы:

где m — масса частицы, v — ее скорость, h — постоянная Планка. Волны, о которых идет речь, называются волнами де Бройля.

Связь между энергией частицы E и частотой ν волны де Бройля

Волны де Бройля имеют специфическую природу, не имеющую аналогии среди волн, изучаемых в классической физике: квадрат модуля амплитуды волны де Бройля в данной точке является мерой вероятности того, что частица обнаруживается в этой точке. Дифракционные картины, которые наблюдаются в опытах, являются проявлением статистическойзакономерности, согласно которой частицы попадают в определенные места в приёмниках — туда, где интенсивность волны де Бройля оказывается наибольшей. Частицы не обнаруживаются в тех местах, где, согласно статистической интерпретации, квадрат модуля амплитуды «волны вероятности» обращается в нуль.


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 350; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.027 с.)
Главная | Случайная страница | Обратная связь