Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Атомные спектры и формула Бальмера



Исследования спектров излучения разреженных газов (т. е. спектров излучения отдельных атомов) показали, что каждому газу присущ определенный линейчатый спектр, состоящий из отдельных спектральных линий или групп близко расположенных линий. Самым изученным является спектр наиболее простого атома — атома водорода.

Швейцарский ученый И. Бальмер (1825—1898) подобрал эмпирическую формулу, описывающую все известные в то время спектральные линии атома водорода в видимой области спектра:

В инфракрасной области спектра были также обнаружены:

Все приведенные выше серии в спектре атома водорода могут быть описаны одной формулой, называемой обобщенном формулой Бальмера:

 

26 Интерференция света — нелинейное сложение интенсивностей двух или нескольких световых волн. Это явление сопровождается чередующимися в пространстве максимумами и минимумами интенсивности. Её распределение называется интерференционной картиной. При интерференции света происходит перераспределение энергии в пространстве.

Условия наблюдения интерференции

Рассмотрим несколько характерных случаев:

1. Ортогональность поляризаций волн.

При этом и. Интерференционные полосы отсутствуют, а контраст равен 0. Далее, без потери общности, можно положить, что поляризации волн одинаковы.

2. В случае равенства частот волн и контраст полос не зависит от времени экспозиции.

3. В случае значение функции и интерференционная картина не наблюдается. Контраст полос, как и в случае ортогональных поляризаций, равен 0

4. В случае контраст полос существенным образом зависит от разности частот и времени экспозиции.

 

27 Ква́ нтовая тео́ рия по́ ля (КТП) — раздел физики, изучающий поведение квантовых систем с бесконечно большим числом степеней свободы — квантовых (или квантованных) полей; является теоретической основой описания микрочастиц, их взаимодействий и превращений. Именно на квантовой теории поля базируется вся физика высоких энергий, физика элементарных частиц и физика конденсированного состояния. Квантовая теория поля сейчас является единственной экспериментально подтверждённой теорией, способной описать и предсказать поведение элементарных частиц при высоких энергиях (то есть при энергиях, существенно превышающих их энергию покоя).Математический аппарат КТП — гильбертово пространство состояний (пространство Фока) квантового поля и действующие в нём операторы. В отличие от квантовой механики, «частицы» как некие неуничтожимые элементарные объекты в КТП отсутствуют. Вместо этого основные объекты здесь — векторы фоковского пространства, описывающие всевозможные возбуждения квантового поля. Аналогом квантовомеханической волновой функции в КТП является полевой оператор (точнее, «поле» — это операторнозначная обобщённая функция, из которой только после свёртки с основной функцией получается оператор, действующий в гильбертовом пространстве состояний), способный действовать на вакуумный вектор фоковского пространства (см. вакуум) и порождать одночастичные возбуждения квантового поля. Физическим наблюдаемым здесь также соответствуют операторы, составленные из полевых операторов[стиль! ].

Именно на квантовой теории поля базируется вся физика элементарных частиц.При построении квантовой теории поля ключевым моментом было понимание сущности явления перенормировки.

 

 

29 Принцип Гюйгенса — Френеля — основной постулат волновой теории, описывающий и объясняющий механизм распространения волн, в частности, световых.

Принцип Гюйгенса — Френеля является развитием принципа, который ввёл Христиан Гюйгенс в 1678 году: каждая точка поверхности, достигнутая световой волной, является вторичным источником световых волн. Огибающая вторичных волн становится фронтом волны в следующий момент времени. Принцип Гюйгенса объясняет распространение волн, согласующееся с законами геометрической оптики, но не может объяснить явлений дифракции. Огюстен Жан Френель в 1815 году дополнил принцип Гюйгенса, введя представления о когерентности и интерференции элементарных волн, что позволило рассматривать на основе принципа Гюйгенса — Френеля и дифракционные явления.

Принцип Гюйгенса — Френеля формулируется следующим образом:

Каждый элемент волнового фронта можно рассматривать, как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.

 

30 Квантовые числа – целые или дробные числа, определяющие возможные значения физических величин, характеризующих квантовую систему (молекулу, атом, атомное ядро, элементарную частицу). Квантовые числа отражают дискретность (квантованность) физических величин, характеризующих микросистему. Набор квантовых чисел, исчерпывающе описывающих микросистему, называют полным. Так состояние электрона в атоме водорода определяется четырьмя квантовыми числами: главным квантовым числом n (может принимать значения 1, 2, 3, …), определяющим энергию Еn электрона (Еn = -13.6/n2 эВ); орбитальным квантовым числом l = 0, 1, 2, …, n – 1, определяющим величину L орбитального момента количества движения электрона (L = [l(l + 1)]1/2); магнитным квантовым числом m < ± l, определяющим направление вектора орбитального момента; и квантовым числом ms = ± 1/2, определяющим направление вектора спина электрона.

 

 

Энергия связи

Так как между массой и энергией существует связь Е = mc2, то при делении тяжелых ядер и при синтезе легких ядер должна выделяться энергия, существующая из-за дефекта масс, и эта энергия на-зывается энергией связи атомного ядра. Есв = Мс2

Энергия связи ядра равна минимальной энергии, которую необходимо затратить для полного расщепления ядра на отдельные частицы. Из закона сохранения энергии следует, что энергия связи равна той энергии, которая выделяется при образовании ядра из отдельных частиц. Энергию связи любого ядра можно определить с помощью точного измерения его массы. В настоящее время физики научились измерять массы частиц – электронов, протонов, нейтронов, ядер и др. – с очень высокой точностью. Эти измерения показывают, что масса любого ядра Mя всегда меньше суммы масс входящих в его состав протонов и нейтронов: Mя < Zmp + Nmn.

 

Разность массΔ M = Zmp + Nmn – Mя.

 

называется дефектом массы. По дефекту массы можно определить с помощью формулы Эйнштейна E = mc2 энергию, выделившуюся при образовании данного ядра, то есть энергию связи ядра Eсв: Eсв = Δ Mc2 = (Zmp + Nmn – Mя)c2.

Эта энергия выделяется при образовании ядра в виде излучения γ -квантов. Рассчитаем в качестве примера энергию связи ядра гелия, в состав которого входят два протона и два нейтрона. Масса ядра гелия Mя = 4, 00260 а. е. м. Сумма масс двух протонов и двух нейтронов составляет 2mp + 2mn = 4, 03298 а. е. м. Следовательно, дефект массы ядра гелия равен Δ M = 0, 03038 а. е. м. Расчет по формуле Eсв = Δ Mc2 приводит к следующему значению энергии связи ядра: Eсв = 28, 3 МэВ. Это огромная величина. Образование всего 1 г гелия сопровождается выделением энергии порядка 1012 Дж. Примерно такая же энергия выделяется при сгорании почти целого вагона каменного угля. Энергия связи ядра на много порядков превышает энергию связи электронов с атомом. Для атома водорода например, энергия ионизации равна 13, 6 эВ. В таблицах принято указывать


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 404; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь