Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Вопрос 2 Теплопроводность твердых тех
Теплопроводностью называется процесс переноса тепла от более нагретых частей тела к менее нагретым, приводящий к выравниванию температуры тела. В твердых телах, в отличие от жидкостей и газов, невозможна конвекция (передача тепла потоками нагретого вещества), поэтому перенос тепла осуществляется только за счет колебаний кристаллической решетки или с точки зрения квантовой теории за счет движения фононов. Если при данной температуре T один из узлов колеблется с амплитудой u, большей среднего значения , то он, будучи связан с соседями силой межатомного взаимодействия, будет действовать на них, вызывая рост амплитуды колебаний соседних частиц. Таким образом, энергия передается от одного узла решетки к другому. Если концы твердого тела (например, стержня) поддерживаются при разных температурах, то в образце возникает непрерывный поток тепла. Каждый узел колеблется с меньшей амплитудой, чем соседний с ним со стороны более нагретого конца, и с большей амплитудой, чем соседний с ним со стороны менее нагретого конца. Количественно тепловой поток через поперечное сечение стержня за время пропорционален градиенту температуры (закон Фурье):
где l - коэффициент теплопроводности, который численно равен количеству тепла, прошедшего через единицу площади за единицу времени при градиенте температуры, равном единице (площадка перпендикулярна оси x). В системе СИ размерность коэффициента теплопроводности составляет Вт/(м× К), но часто используют размерности Вт/(см× К) и кал/(см× с× К). Знак минус в формуле (6.63) показывает, что распространение тепла идет в сторону выравнивания градиента температуры (от более нагретой части тела к менее нагретой). При низких температурах следует учитывать квантовый характер тепловых волн. Если , то при теплообмене возбуждаются любые колебания в кристалле, все квантовые переходы возможны, и поэтому квантовый характер явления теплообмена не заметен. При низких температурах, когда , в кристалле возбуждены лишь колебания с малыми частотами, и большие энергетические ступеньки не могут быть преодолены возникающими тепловыми «толчками». Рассмотрим процесс передачи тепла на основе представлений о фононах. Из теории Дебая следует, что возбужденное состояние решетки можно представить как идеальный газ фононов, свободно движущийся в объеме кристалла. Фононный газ в определенном интервале температур ведет себя подобно идеальному газу, а поскольку фононы являются основными переносчиками тепла в твердом теле (это утверждение справедливо только для диэлектриков), то коэффициент теплопроводности твердого тела можно выразить такой же зависимостью, как коэффициент теплопроводности идеального газа
где − теплоемкость единицы объема фононного газа, − средняя длина свободного пробега фонона, − скорость распространения звука в данном теле. Вычисление средней длины свободного пробега фонона представляет собой сложную задачу, поскольку она зависит от того, на чем происходит рассеяние фононов: на других фононах, на дефектах структуры или на внешних гранях образца. Однако теоретический анализ приводит к тому, что при достаточно высоких температурах средняя длина свободного пробега фонона обратно пропорциональна абсолютной температуре. Поэтому коэффициент теплопроводности твердых тел при температурах выше характеристической ( ) обратно пропорционален абсолютной температуре. В достаточно чистых и бездефектных кристаллах при температуре, близкой к абсолютному нулю, возникает зависимость средней длины свободного пробега фононов от размеров образца. Это объясняется тем, что при низких температурах концентрация фононов мала, а следовательно, мала вероятность рассеяния фононов на других фононах. Пример зависимости коэффициента теплопроводности от температуры при различных сечениях образца монокристалла LiF показан на рис. 6.10 [98]. Видно, что различие в теплопроводности для образцов разного сечения проявляется только в области низких температур.
Полагая среднюю длину свободного пробега фононов приблизительно равной линейным размерам кристалла ( , где L − линейный размер кристалла), можно уравнение (6.54) переписать в виде
В правой части уравнения (6.55) от температуры зависит только теплоемкость единицы объема фононного газа . При температурах, близких к абсолютному нулю, теплоемкость пропорциональна (закон Дебая), поэтому и коэффициент теплопроводности l пропорционален кубу абсолютной температуры. Такой вывод подтверждается экспериментальными данными. Анизотропия сил связи в кристаллах приводит к анизотропии коэффициента теплопроводности. Это можно проиллюстрировать на примере монокристалла кварца (рис. 6.11). В табл. 6.5 [52] представлены данные о коэффициенте теплопроводности по направлению, параллельному оси с, и по перпендикулярному к этой оси направлению.
Коэффициент теплопроводности вдоль гексагональной оси с кварца приблизительно вдвое выше соответствующих значений в направлениях перпендикулярных оси с, т. е. в направленииях, лежащих в базисной плоскости кристалла. С понижением температуры коэффициент теплопроводности возрастает, как и предсказывает квантовая теория. Все вышесказанное относится к решеточной (фононной) части теплоемкости твердого тела, свойственной неметаллическим кристаллам. В металлах в переносе тепла, кроме атомов кристаллической решетки, участвуют еще и свободные электроны, которые одновременно являются и носителями электрического заряда, обеспечивая высокую электропроводность металлов. Более того, в чистых металлах основными носителями тепла являются именно свободные электроны, а не фононы. При достаточно высоких температурах металлов решеточная составляющая теплопроводности составляет всего 1− 2 % от электронной теплопроводности. Этим объясняется высокая теплопроводность чистых металлов по сравнению с диэлектриками. Например, у алюминия при комнатной температуре коэффициент теплопроводности l = 2, 26 × 106 Вт/(см× К), что приблизительно на два порядка больше, чем у кварца (см. табл. 6.5). Однако при очень низких температурах в металлах электронная часть теплопроводности меньше, чем решеточная. Это объясняется эффектами электрон-фононного рассеяния. На рис. 6.12 приведен вид зависимости теплопроводности от температуры для диэлектриков и металлов.
В диэлектриках, практически не имеющих свободных электронов, перенос тепла осуществляется только фононами. Выше было сказано, что средняя длина свободного пробега зависит от процессов рассеяния фононов на различных объектах. Все это приводит к тому, что температурная зависимость коэффициента теплопроводности l для диэлектриков имеет вид кривой с максимумом (рис. 6.12, а). Левая восходящая ветвь зависимости обусловлена увеличением числа фононов с ростом температуры, а правая нисходящая связана с ослабляющими фонон-фононным и другими видами рассеяния. Вид зависимости l(T) для металлов (рис. 6.12, б) качественно похож на кривую для диэлектриков. Это связано с преобладанием при очень низких температурах фононного механизма теплопередачи. Однако с ростом температуры вклад фононной составляющей в этот процесс становится пренебрежимо мал и теплопередача осуществляется в основном свободными электронами. При относительно высоких температурах в металлах коэффициент теплопроводности l практически перестает изменяться с увеличением Т.
Билет 12. |
Последнее изменение этой страницы: 2017-03-14; Просмотров: 665; Нарушение авторского права страницы