Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Электронная проводимость металлов
В начале XX века была создана классическая электронная теория проводимости металлов (П. Друде, 1900 г., Х.Лоренц, 1904 г.), которая дала простое и наглядное объяснение большинства электрических и тепловых свойств металлов. Рассмотрим некоторые положения этой теории. Свободные электроны Металлический проводник состоит из: 1) положительно заряженных ионов, колеблющихся около положения равновесия, и 2) свободных электронов, способных перемещаться по всему объему проводника. Таким образом, электрические свойства металлов обусловлены наличием в них свободных электронов с концентрацией порядка 1028 м–3, что примерно соответствует концентрации атомов. Эти электроны называются электронами проводимости. Они образуются путем отрыва от атомов металлов их валентных электронов. Такие электроны не принадлежат какому-то определенному атому и способны перемещаться по всему объему тела. В металле в отсутствие электрического поля электроны проводимости хаотически движутся и сталкиваются, чаще всего с ионами кристаллической решетки (рис. 1). Совокупность этих электронов можно приближенно рассматривать как некий электронный газ, подчиняющийся законам идеального газа. Средняя скорость теплового движения электронов при комнатной температуре составляет примерно 105 м/с. Условия существования электрического тока Электрическое поле в среде необходимо для создания направленного движения свободных зарядов. Как известно, на заряд q в электрическом поле напряженностью E действует сила F = q* E, которая и заставляет свободные заряды двигаться в направлении электрического поля. Признаком существования в проводнике электрического поля является наличие не равной нулю разности потенциалов между любыми двумя точками проводника, Для поддержания тока в электрической цепи на заряды кроме кулоновских сил должны действовать силы неэлектрической природы (сторонние силы).
Билет. Сила тока Силой тока называется физическая величина , равная отношению количества заряда , прошедшего за некоторое время через поперечное сечение проводника, к величине этого промежутка времени. Сила тока в Международной системе единиц (СИ) измеряется в амперах. По закону Ома сила тока для участка цепи прямо пропорциональна приложенному напряжению к участку цепи и обратно пропорциональна сопротивлению проводника этого участка цепи:
Для измерения силы тока используют специальный прибор — амперметр (для приборов, предназначенных для измерения малых токов, также используются названия миллиамперметр, микроамперметр, гальванометр). Его включают в разрыв цепи в том месте, где нужно измерить силу тока. Основные методы измерения силы тока: магнитоэлектрический, электромагнитный и косвенный (путём измерения вольтметром напряжения на известном сопротивлении). В случае переменного тока различают мгновенную силу тока, амплитудную (пиковую) силу тока и эффективную силу тока (равную силе постоянного тока, который выделяет такую же мощность). Пло́ тность то́ ка — векторная физическая величина, имеющая смысл силы тока, протекающего через единицу площади. Например, при равномерном распределении плотности тока и всюду ортогональности ее плоскости сечения, через которое вычисляется или измеряется ток, величина вектора плотности тока: где I - сила тока через поперечное сечение проводника площадью S (также см.рисунок). · (Иногда речь может идти о скалярной[1] плотности тока, в таких случаях под ней подразумевается именно та величина j, которая приведена в формуле чуть выше).
В общем случае: , где — нормальная (ортогональная) составляющая вектора плотности тока по отношению к элементу площади ; вектор - специально вводимый вектор элемента площади, ортогональный элементарной площадке и имеющий абсолютную величину, равную ее площади, позволяющий записать подынтегральное выражение как обычное скалярное произведение. Как видим из этого определения, сила тока есть поток вектора плотности тока через некую заданную фиксированную поверхность. В простейшем предположении, что все носители тока (заряженные частицы) двигаются с одинаковым вектором скорости и имеют одинаковые заряды (такое предположение может иногда быть приближенно верным; оно позволяет лучше всего понять физический смысл плотности тока), а концентрация их , или где - плотность заряда этих носителей. (Направление вектора соответствует направлению вектора скорости , с которой движутся заряды, создающие ток, если q положително). В реальности даже носители одного типа движутся вообще говоря и как правило с различными скоростями. Тогда под следует понимать среднюю скорость. В сложных системах (с различными типами носителей заряда, например, в плазме или электролитах) то есть вектор плотности тока есть сумма плотностей тока по всем типам подвижных носителей; где - концентрация частицкаждого типа, - заряд частицы данного типа, - вектор средней скорости частиц этого типа. Выражение для общего случая может быть записано также через сумму по всем индивидуальным частицам: (сама формула почти совпадает с формулой, приведенной чуть выше, но теперь индекс суммирования i означает не номер типа частицы, а номер каждой индивидуальной частицы, не важно, имеют они одинаковые заряды или разные, при этом концентрации оказываются уже не нужны). |
Последнее изменение этой страницы: 2017-03-14; Просмотров: 840; Нарушение авторского права страницы