Закон теплопроводности Фурье
В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:
где — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, — коэффициент теплопроводности (иногда называемый просто теплопроводностью), T — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad T (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.[1]
В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):
где P — полная мощность тепловых потерь, S — площадь сечения параллелепипеда, Δ T — перепад температур граней, l — длина параллелепипеда, то есть расстояние между гранями.
Коэффициент теплопроводности измеряется в Вт/(м·K).
Вязкость, и перенос импульса. Закон Ньютона для силы вязкого трения.
Вя́ зкость (вну́ треннеетре́ ние) — одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. Механизм внутреннего трения в жидкостях и газах заключается в том, что хаотически движущиеся молекулы переносят импульс из одного слоя в другой, что приводит к выравниванию скоростей — это описывается введением силы трения. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно.
Различают динамическую вязкость (единицы измерения: пуаз, 0, 1Па·с) и кинематическую вязкость (единицы измерения: стокс, м² /с, внесистемная единица — градус Энглера). Кинематическая вязкость может быть получена как отношение динамической вязкости к плотности вещества и своим происхождением обязана классическим методам измерения вязкости, таким как измерение времени вытекания заданного объёма через калиброванное отверстие под действием силы тяжести.
Прибор для измерения вязкости называется вискозиметром.
Перенос импульса
Внутреннее трение (вязкость). Суть механизма возникновения внутреннего трения между параллельными слоями газа (жидкости), которые движущутся с различными скоростями, есть в том, что из-за хаотического теплового движения осуществляется обмен молекулами между слоями, в результате чего импульс слоя, который движется быстрее, уменьшается, который движется медленнее — увеличивается, что приводит к торможению слоя, который движется быстрее, и ускорению слоя, который движется медленнее.
Как известно, сила внутреннего трения между двумя слоями газа (жидкости) подчиняется закону Ньютона:
(5), где η — динамическая вязкость (вязкость), dν /dx — градиент скорости, который показывает быстроту изменения скорости в направлении х, перпендикулярном направлению движения слоев, S — площадь, на которую действует сила F.
Согласно второму закону Ньютона взаимодействие двух слоев можно рассматривать как процесс, при котором в единицу времени от одного слоя к другому передается импульс, который по модулю равен действующей силе. Тогда выражение (5) можно записать в виде
(6)
где jp — плотность потока импульса — величина, которая определяется определяемая полным импульсом, переносимым в единицу времени в положительном направлении оси х через единичную площадку, перпендикулярную оси х, dν /dx — градиент скорости. Знак минус говорит о том, что импульс переносится в направлении убывания скорости (поэтому знаки jp и dν /dx противоположны).
Динамическая вязкость η численно равна плотности потока импульса при градиенте скорости, равном единице; она вычисляется по формуле
(7)
Из сопосавления формул (1), (3) и (6), которые описывают явления переноса, следует, что закономерности всех явлений переноса сходны между собой. Эти законы были известны еще задолго до того, как они были обоснованы и получены из молекулярно-кинетической теории, которая позволила установить, что внешнее сходство их математических выражений является следствием общностью лежащего в основе явлений теплопроводности, диффузии и внутреннего трения молекулярного механизма перемешивания молекул в процессе их хаотического движения и столкновений друг с другом.
Рассмотренные законы Фурье, Фика и Ньютона не вскрывают молекулярно-кинетической сути коэффициентов λ, D и η. Выражения для коэффициентов переноса получаются из кинетической теории. Они записаны без вывода, поскольку строгое и формальное рассмотрение явлений переноса довольно громоздко, а качественное — не имеет смысла. Формулы (2), (4) и (7) дают связь коэффициентов переноса и характеристики теплового движения молекул. Из этих формул следуют простые зависимости между λ, D и η:
и
Используя эти формулы, можно по найденным из опыта одним величинам найти другие.
Явление вязкости или внутреннего трения наблюдается как в газах и жидкостях, так и в твердых телах. Оно приводит к возникновению силы сопротивления при движении тела в жидкости или газе, и к затуханию звуковых волн при прохождении их через различные среды. В частности, с явлением вязкого трения связан процесс затухания колебаний в механических осцилляторах.
Рассмотрим твердое тело, движущееся в жидкости. Как показывает опыт, слои жидкости, непосредственно примыкающие к движущемуся телу, как бы прилипают к нему и вовлекаются в направленное движение. За счет обмена молекулами между слоями это движение передается соседним слоям, от них — следующим и т. д. Таким образом возникает поток импульса от слоев, обладающих большей скоростью, к слоям с меньшей скоростью. Именно в этом и состоит механизм жидкого трения, или вязкости.
Действительно, увеличение импульса жидкости означает, что на нее со стороны тела действует какая-то сила (изменение импульса системы равно импульсу внешних сил, действующих на нее). Следовательно, согласно третьему закону Ньютона со стороны жидкости на тело действует сила, направленная в противоположную сторону. Это и есть сила жидкого трения.
Причина возникновения вязкого трения - это внутреннее трение.
Если твёрдое тело движется в неподвижной среде, прилипший к нему слой воды или воздуха перемещается вместе с ним. При этом он скользит вдоль соседнего слоя. Возникает сила трения, увлекающая этот слой. Он приходит в движение и в свою очередь увлекает следующий слой и т. д.
Чем дальше от поверхности тела, тем медленнее движутся слои жидкости или газа.
Сила трения между слоями тормозит более быстрые слои и, значит, само твёрдое тело. Оно тормозится непосредственно вязким трением. То же самое происходит, когда поток жидкости или газа течёт мимо неподвижного тела.Поток импульса от слоев, движущихся быстро, к слоям, движущимся с меньшей скоростью, пропорционален разности скоростей этих слоев. Коэффициент пропорциональности между потоком импульса и разностью скоростей называется коэффициентом вязкости жидкости η.
Это явление возникновения касательных сил, препятствующих перемещению частей жидкости или газа друг по отношению к другу. Смазка между двумя твердыми телами заменяет сухое трение скольжения трением скольжения слоев жидкости или газа по отношению друг к другу. Скорость частиц среды плавно меняется от скорости одного тела до скорости другого тела. Величина силы вязкого трения пропорциональна скорости относительного движения V тел, пропорциональна площади S и обратно пропорциональна расстоянию между плоскостями h.
F= - VS/h (1)
Коэффициент пропорциональности, зависящий от сорта жидкости или газа, называют коэффициентом динамической вязкости. Самое важное в характере сил вязкого трения то, что при наличии любой сколь угодно малой силы тела придут в движение, то есть не существует трения покоя.
Если движущееся тело полностью погружено в вязкую среду и расстояния от тела до границ среды много больше размеров самого тела, то в этом случае говорят о трении или сопротивлении среды. При этом участки среды (жидкости или газа), непосредственно прилегающие к движущемуся телу, движутся с такой же скоростью, как и само тело, а по мере удаления от тела скорость соответствующих участков среды уменьшается, обращаясь в нуль на бесконечности. Сила сопротивления среды зависит от ее вязкости, от формы тела, от скорости движения тела относительно среды. Например, при медленном движении шарика в вязкой жидкости силу трения можно найти, используя формулу Стокса:
F= - 6RV (2)
Пропорциональность силы трения скорости движения тела в среде выполняется только при малых скоростях движения. Критерием малости служит безразмерное число Рейнольдса:
Re=VR (3)
Здесь - плотность среды, а R- характерный размер тела. Для шара таким размером является его радиус. Для тела определенной формы существует максимальное (критическое) число Рейнольдса, при котором трение остается вязким, например, для шара это число 100. При больших скоростях движения характер силы трения меняется величина силы трения перестает быть пропорциональной скорости движения тела.
Закон вязкости (внутреннего трения) Ньютона — математическое выражение, связывающее напряжение внутреннего трения τ (вязкость) и изменение скорости среды v в пространстве (скорость деформации) для текучих тел (жидкостей и газов):
,
где величина η называется коэффициентом внутреннего трения или динамическим коэффициентом вязкости (единица СГС — пуаз)- с физической точки зрения представляет собой удельную силу трения при градиенте скорости равном единице. Кинематическим коэффициентом вязкости называется величина μ = η / ρ (единица СГС — Стокс, ρ − плотность среды).
Закон Ньютона может быть получен аналитически приемами физической кинетики, где вязкость рассматривается обычно одновременно с теплопроводностью и соответствующим законом Фурье для теплопроводности. В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле
,
где — средняя скорость теплового движения молекул, − средняя длина свободного пробега.