Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Распределение Больцмана. Распределение Максвелла-Больцмана.



Заменив в барометрической формуле давление через nkT, получим закон изменения с высотой числа молекул в единице объёма: , где - масса 1-ой молекулы, k – постоянная Больцмана, - число молекул в единице объёма на высоте, равной 0, n – то же число на высоте . Из этой формулы следует, что с понижением температуры число частиц на высотах, отличных от нуля, убывает, обращаясь в 0 при Т=0. При высоких температурах, напротив, n слабо убывает: все молекулы оказываются распределёнными по высоте почти равномерно, т.к. каждое распределение молекул по высоте устанавливается в результате 2-ух тенденций: 1) притяжение молекул к земле mg стремиться расположить их на поверхности земли; 2) тепловое движение kT стремиться разбросать молекулы равномерно по высотам. На разной высоте молекула обладает различным запасом потенциальной энергии: . Следовательно, распределение молекул по высоте является и распределением их по значениям потенциальной энергии. Объединив закон изменения с высотой числа молекул в единице объёма формулу запаса потенциальной, энергии получим распределение Больцмана: где и – число молекул в точках, где потенциальная энергия имеет значения и . Больцман доказал, что распределение справедливо не только в случае потенциального поля сил земного тяготения, но и в любом потенциальном поле сил для совокупности любых одинаковых частиц, находящихся в состоянии хаотического теплового движения. В то время как закон Максвелла даёт распределение частиц по значениям кинетической энергии, закон Больцмана даёт распределения частиц по значениям потенциальной энергии. Распределения Максвелла и Больцмана можно объединить в один закон Максвелла-Больцмана, согласно которому содержащееся в единице объёма количество молекул, скорость которых лежит между , равно: .

Энтропия.

Термодинамическая энтропия S, часто просто именуемая энтропия, в химии и термодинамике является функцией состояния термодинамической системы. Понятие энтропии было впервые введено Рудольфом Клаузиусом, который определил изменение энтропии термодинамической системы при обратимом процессе как отношение изменения общего количества тепла Δ Q к величине абсолютной температуры T (то есть изменение тепла при постоянной температуре): . Например, при температуре 0 °C, вода может находиться в жидком состоянии и при незначительном внешнем воздействии начинает быстро превращаться в лед, выделяя при этом некоторое количество теплоты. При этом температура вещества так и остается 0 °C. Изменяется состояние вещества, сопровождающееся изменением тепла, вследствие изменения структуры.

Эта формула применима только для изотермического процесса (происходящего при постоянной температуре). Её обобщение на случай произвольного квазистатического процесса выглядит так: , где dS — приращение (дифференциал) энтропии, а δ Q — бесконечно малое приращение количества теплоты. Необходимо обратить внимание на то, что рассматриваемое термодинамическое определение применимо только к квазистатическим процессам (состоящим из непрерывно следующих друг за другом состояний равновесия).

Энтропия – аддитивная величина, т.е. энтропия системы равна сумме энтропий отдельных её частей.

Больцман установил связь энтропии с вероятностью данного состояния. Позднее эту связь представил в виде формулы Планк: , где константа k = 1, 38× 10− 23 Дж/К названа Планком постоянной Больцмана, а Ω — (термодинамическая вероятность) статистический вес состояния, является числом возможных микросостояний (способов) с помощью которых можно перейти в данное макроскопическое состояние. Этот постулат, названный Альберт Эйнштейном принципом Больцмана, положил начало статистической механики, которая описывает термодинамические системы, используя статистическое поведение составляющих их компонентов. Принцип Больцмана связывает микроскопические свойства системы (Ω ) с одним из её термодинамических свойств (S). Согласно определению, энтропия является функцией состояния, то есть не зависит от способа достижения этого состояния, а определяется параметрами этого состояния. Так как Ω может быть только натуральным числом (1, 2, 3, …), то энтропия Больцмана должна быть неотрицательной — исходя из свойств логарифма.

Энтропия в открытых системах:

В силу второго начала термодинамики, энтропия Si замкнутой системы не может уменьшаться (закон неубывания энтропии). Математически это можно записать так: , индекс i обозначает так называемую внутреннюю энтропию, соответствующую замкнутой системе. В открытой системе возможны потоки тепла, как из системы, так и внутрь неё. В случае наличия потока тепла в систему приходит количество тепла δ Q1 при температуре T1 и уходит количество тепла δ Q2 при температуре T2. Приращение энтропии, связанное с данными тепловыми потоками, равно:

В стационарных системах обычно δ Q1 = δ Q2, T1 > T2, так что dSo < 0. Поскольку здесь изменение энтропии отрицательно, то часто употребляют выражение «приток негэнтропии», вместо оттока энтропии из системы. Негэнтропия определяется таким образом как обратная величина энтропии.

Суммарное изменение энтропии открытой системы будет равно: dS = dSi + dSo.

Если всё время dS > 0, то рост внутренней энтропии не компенсируется притоком внешней негэнтропии, система движется к ближайшему состоянию равновесия. Если dS = 0, то мы имеем стационарный процесс с неизменной общей энтропией. В этом случае в системе осуществляется некоторая внутренняя работа с генерацией внутренней энтропии, которая преобразует, например, температуру T1 внешнего потока тепла в температуру T2 уходящего из системы потока тепла.

Измерение энтропии:

В реальных экспериментах очень трудно измерить энтропию системы. Техники измерения базируются на термодинамическом определении энтропии и требуют экстремально аккуратной калориметрии.

Для упрощения мы будем исследовать механическую систему, термодинамические состояния которой будут определены через её объем V и давление P. Для измерения энтропии определенного состояния мы должны сперва измерить теплоёмкость при постоянных объёме и давлении (обозначенную CV и CP соответственно), для успешного набора состояний между первоначальным состоянием и требуемым. Тепловые ёмкости связаны с энтропией S и с температурой T согласно формуле: , где нижний индекс X относится к постоянным объёму и давлению. Мы можем проинтегрировать для получения изменения энтропии: . Таким образом, мы можем получить значение энтропии любого состояния (P, V) по отношению к первоначальному состоянию (P0, V0). Точная формула зависит от нашего выбора промежуточных состояний. Для примера, если первоначальное состояние имеет такое же давление, как и конечное состояние, то

 

В добавление, если путь между первым и последним состояниями лежит сквозь любой фазовый переход первого рода, скрытая теплота, ассоциированная с переходом, должна также учитываться.

Энтропия первоначального состояния должна быть определена независимо. В идеальном варианте выбирается первоначальное состояние как состояние при экстремально высокой температуре, при которой система существует в виде газа. Энтропия в этом состоянии подобна энтропии классического идеального газа плюс взнос от молекулярных вращений и колебаний, которые могут быть определены спектроскопически.

Следующее уравнение может быть использовано для построения графика изменения энтропии на диаграмме P—V:

Здесь два замечания: это не определение энтропии (но выведено из него); предполагается, что CV и CP постоянные, что на самом деле не так.

 


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 522; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь