|
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Числовые характеристики случайного вектора
100. Как найти математическое ожидание функции φ (X, Y), где X, Y – компоненты случайного вектора (X, Y)? Как определяются начальные ν k, l и центральные μ k, l моменты случайного вектора (X, Y)? Для математического ожидания функции ф(х, у) от компонент случайного вектора (X, Y) справедлива формула
Мы видели, что в одномерном случае основные числовые характеристики случайной величины выражались через начальные и центральные моменты. Дадим аналогичное определение для случайного вектора. Началъным моментом порядка (к, 1} называется математическое ожидание функции хку':
Центральным моментом порядка (к, Г) называется математическое ожидание функции (х-тх) \y-mY), где тх = М(Х), mY = M{Y):
Числа к и l характеризуют порядок момента по отношению к каждой компоненте случайного вектора. Число r = к + l называют суммарным порядком момента. Соответственно суммарному порядку моменты можно разделить на моменты первого, второго и т.д. порядка. Мы рассмотрим более подробно моменты первого и второго порядка. Первые начальные моменты - это нам уже знакомые математические ожидания случайных величин X и Y.
Аналогично, Точка с координатами (М(Х), M(Y)) характеризует центр системы случайных величин, вокруг которого происходит рассеивание возможных значений. Кроме первых моментов широко применяют вторые центральные моменты, которые бывают трех типов. Два из них дают знакомые нам дисперсии компонент X и Y:
которые характеризуют рассеивание возможных значений случайных величин X и 7 вдоль осей х и у. Особую роль в определении взаимодействия компонент играет второй смешанный центральный момент
101. Каков смысл начальных ν 0, 1, ν 1, 0 и центральных μ 1, 0 μ 0, 1 μ 1, 1, , моментов двумерного случайного вектора (X, Y)? Ответ обоснуйте. Первые начальные моменты – это математические ожидания случайных величин Х и У.
Точка с координатами (М(Х), М(У)) характеризует центр системы случайных величин, вокруг которого происходит рассеивание возможных значений. Кроме первых моментов широко используют вторые центральные моменты, которые бывают трех типов. Два из них дают знакомые нам дисперсии компонент Х и У:
Особую роль в определении взаимодействия компонент играет второй смешанный центральный момент
102. Дайте определение корреляционной и ковариационной матриц для системы случайных величин Х1, Х2…Хn и сформулируйте их основные свойства. Для набора случайных величин X1, X2, …, Xn ковариационной матрицей вариаций
Пусть C – ковариационная матрица случайных величин выполняется соотношение при этом условие Ковариационная и корреляционная матрицы всегда симметричны и неотрицательно определены, поэтому их определители неотрицательны:
Определитель корреляционной матрицы удовлетворяет также дополнительному ограничению: 103. Как найти ковариацию Сov(X, Y) случайных величин X и Y, если известна функция плотности Ковариацией или корреляционным моментом случайного вектора (X, Y) называют величину Cov(X, Y) = Ковариация обладает следующими свойствами: 1. Соv(Х, Y) = M(XY) - M(X)M(Y).
Соу(Х, X) = D(X). D(X+Y) = D(X) + D(Y) + 2Cov(X, Y). Если X и Y независимы, то Cov(X, Y) = 0. Cov(X, Y) = Cov(Y, X). Cov(aX, Y) = Cov(X, aY) = aCov(X, Y). Coy(X+Y, Z) = Cov(X, Z) +Coy(Y, Z). Cov(X, Y+ Z) = Cov(X, Y) + Cov(X, Z).
Если Cov(X, Y) = 0, то случайные величины X и Y называются некоррелированными. Таким образом, согласно свойству 4 из независимости X и Y следует их некоррелированность. Обратное утверждение неверно. 104. Укажите формулу для плотности распределения случайной величины Y +X= Z, если ( X, Y) – двумерный случайный вектор с функцией плотности f(x, y) и независимыми компонентами X и Y. Приведите пример ее применения.
если даны 2 независ. случ. величины Х и У, распределённые равномерно соответственно на отр-ках [0, m] и [0, n] (m< =n), то можно найти функцию плотности Z=X+Y. Z сосредоточена на отр-ке [0, m+n], формула принимает вид
При При При |
Последнее изменение этой страницы: 2017-03-15; Просмотров: 684; Нарушение авторского права страницы