Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Основные свойства двойного интеграла. ⇐ ПредыдущаяСтр 4 из 4
Свойства двойного интеграла (и их вывод) аналогичны соответствующим свойствам однократного определенного интеграла. 1°. Аддитивность. Если функция f(x, y) интегрируема в области D и если область D при помощи кривой Г площади нуль разбивается на две связные и не имеющие общих внутренних точек области D1 и D2, то функция f(x, y) интегрируема в каждой из областей D1 и D2, причем
2°. Линейное свойство. Если функции f(x, y) и g(x, y) интегрируемы в области D, а α и β - любые вещественные числа, то функция [α · f(x, y) + β · g(x, y)] также интегрируема в области D, причем
3°. Если функции f(x, y) и g(x, y) интегрируемы в области D, то и произведение этих функций интегрируемо в D. 4°. Если функции f(x, y) и g(x, y) обе интегрируемы в области D и всюду в этой области f(x, y) ≤ g(x, y), то
5°. Если функция f(x, y) интегрируема в области D, то и функция |f(x, y)| интегрируема в области D, причем
(Конечно, из интегрируемости |f(x, y)| в D не вытекает интегрируемость f(x, y) в D.) 6°. Теорема о среднем значении. Если обе функции f(x, y) и g(x, y) интегрируемы в области D, функция g(x, y) неотрицательна (неположительна) всюду в этой области, M и m - точная верхняя и точная нижняя грани функции f(x, y) в области D, то найдется число μ , удовлетворяющее неравенству m ≤ μ ≤ M и такое, что справедлива формула (11) В частности, если функция f(x, y) непрерывна в D, а область D связна, то в этой области найдется такая точка (ξ , η ), что μ = f(ξ , η ), и формула (11) принимает вид
7°. Важное геометрическое свойство. равен площади области D(Это свойство, как уже отмечалось ранее, непосредственно вытекает из определения интегрируемости. Вычисление двойного интеграла в декартовых координатах. Пусть функция 2-х переменных z = f (x, y) задана и непрерывна в замкнутой области xOy. Двойной интеграл от этой функции по области D имеет вид: , где . Область xOy называется правильной в направлении оси Oy, если всякая прямая, параллельная оси Oy пересекает границу области не более, чем в двух точках (за исключением участков границы, параллельных Oy). Если область D – правильная в направлении оси Oy (рис. 2), то ее можно задать системой неравенств: В этом случае двойной интеграл от функции z = f (x, y) по области D можно вычислить при помощи двукратного (повторного) интеграла: . Здесь внутренний интеграл вычисляется по переменной y в предположении, что x – постоянная (x = const); результатом вычисления внутреннего интеграла является некоторая функция Ф (x). Затем вычисляется внешний интеграл от Ф (x) по переменной x в постоянных пределах, в результате получается число. Приложения двойного интеграла. Теорема. Пусть установлено взаимно однозначное соответствие областей Dxy и Duv с помощью непрерывных, имеющих непрерывные частные производные функций . Пусть функция f(x, y) непрерывна в области Dxy. Тогда , где - якобиан (определитель Якоби) С помощью двойного интеграла можно вычислять площадь поверхности, определять статические моменты, моменты инерции и центр тяжести плоской области. Дифференциальные уравнения. Основные понятия. Дифференциальное уравнение (ДУ) – это уравнение, в которое входит неизвестная функция под знаком производной или дифференциала. Если неизвестная функция является функцией одной переменной, то дифференциальное уравнение называют обыкновенным (сокращенно ОДУ – обыкновенное дифференциальное уравнение). Если же неизвестная функция есть функция многих переменных, то дифференциальное уравнение называют уравнением в частных производных. Максимальный порядок производной неизвестной функции, входящей в дифференциальное уравнение, называется порядком дифференциального уравнения.
Вот примеры ОДУ первого, второго и пятого порядков соответственно В качестве примеров уравнений в частных производных второго порядка приведем Процесс нахождения решений дифференциального уравнения называется интегрированием дифференциального уравнения. Решение дифференциального уравнения - это неявно заданная функция Ф(x, y) = 0, которая обращает дифференциальное уравнение в тождество. |
Последнее изменение этой страницы: 2017-03-15; Просмотров: 274; Нарушение авторского права страницы