Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Основные свойства двойного интеграла.



Свойства двойного интеграла (и их вывод) аналогичны соответствующим свойствам однократного определенного интеграла.

1°. Аддитивность. Если функция f(x, y) интегрируема в области D и если область D при помощи кривой Г площади нуль разбивается на две связные и не имеющие общих внутренних точек области D1 и D2, то функция f(x, y) интегрируема в каждой из областей D1 и D2, причем

2°. Линейное свойство. Если функции f(x, y) и g(x, y) интегрируемы в области D, а α и β - любые вещественные числа, то функция [α · f(x, y) + β · g(x, y)] также интегрируема в области D, причем

3°. Если функции f(x, y) и g(x, y) интегрируемы в области D, то и произведение этих функций интегрируемо в D.

4°. Если функции f(x, y) и g(x, y) обе интегрируемы в области D и всюду в этой области f(x, y) ≤ g(x, y), то

5°. Если функция f(x, y) интегрируема в области D, то и функция |f(x, y)| интегрируема в области D, причем

(Конечно, из интегрируемости |f(x, y)| в D не вытекает интегрируемость f(x, y) в D.)

6°. Теорема о среднем значении. Если обе функции f(x, y) и g(x, y) интегрируемы в области D, функция g(x, y) неотрицательна (неположительна) всюду в этой области, M и m - точная верхняя и точная нижняя грани функции f(x, y) в области D, то найдется число μ , удовлетворяющее неравенству mμ M и такое, что справедлива формула

(11)

В частности, если функция f(x, y) непрерывна в D, а область D связна, то в этой области найдется такая точка (ξ , η ), что μ = f(ξ , η ), и формула (11) принимает вид

7°. Важное геометрическое свойство. равен площади области D(Это свойство, как уже отмечалось ранее, непосредственно вытекает из определения интегрируемости.

Вычисление двойного интеграла в декартовых координатах.

Пусть функция 2-х переменных z = f (x, y) задана и непрерывна в замкнутой области xOy. Двойной интеграл от этой функции по области D имеет вид: , где .

Область xOy называется правильной в направлении оси Oy, если всякая прямая, параллельная оси Oy пересекает границу области не более, чем в двух точках (за исключением участков границы, параллельных Oy).

Если область D – правильная в направлении оси Oy (рис. 2), то ее можно задать системой неравенств:

В этом случае двойной интеграл от функции z = f (x, y) по области D можно вычислить при помощи двукратного (повторного) интеграла:

.

Здесь внутренний интеграл вычисляется по переменной y в предположении, что x – постоянная (x = const); результатом вычисления внутреннего интеграла является некоторая функция Ф (x). Затем вычисляется внешний интеграл от Ф (x) по переменной x в постоянных пределах, в результате получается число.

Приложения двойного интеграла.

Теорема. Пусть установлено взаимно однозначное соответствие областей Dxy и Duv с помощью непрерывных, имеющих непрерывные частные производные функций . Пусть функция f(x, y) непрерывна в области Dxy. Тогда

, где - якобиан (определитель Якоби)

С помощью двойного интеграла можно вычислять площадь поверхности, определять статические моменты, моменты инерции и центр тяжести плоской области.

Дифференциальные уравнения. Основные понятия.

Дифференциальное уравнение (ДУ) – это уравнение, в которое входит неизвестная функция под знаком производной или дифференциала.

Если неизвестная функция является функцией одной переменной, то дифференциальное уравнение называют обыкновенным (сокращенно ОДУ – обыкновенное дифференциальное уравнение). Если же неизвестная функция есть функция многих переменных, то дифференциальное уравнение называют уравнением в частных производных.

Максимальный порядок производной неизвестной функции, входящей в дифференциальное уравнение, называется порядком дифференциального уравнения.

 

Вот примеры ОДУ первого, второго и пятого порядков соответственно

В качестве примеров уравнений в частных производных второго порядка приведем

Процесс нахождения решений дифференциального уравнения называется интегрированием дифференциального уравнения.

Решение дифференциального уравнения - это неявно заданная функция Ф(x, y) = 0, которая обращает дифференциальное уравнение в тождество.


Поделиться:



Последнее изменение этой страницы: 2017-03-15; Просмотров: 274; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.013 с.)
Главная | Случайная страница | Обратная связь