Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
ОПРЕДЕЛИТЕЛИ ВТОРОГО И ТРЕТЬЕГО ПОРЯДКОВСтр 1 из 6Следующая ⇒
Министерство сельского хозяйства Российской Федерации Федеральное государственное образовательное учреждение высшего образования «Саратовский государственный аграрный университет Имени Н.И. Вавилова» МАТЕМАТИКА Краткий курс лекций для студентов 1 курса
Саратов 2016
Лекция 1 ОПРЕДЕЛИТЕЛИ ВТОРОГО И ТРЕТЬЕГО ПОРЯДКОВ Понятие определителей
Определителем второго порядка называется число, получаемое следующим образом: a11a22 – a12a21. Определитель обозначается символом . Итак, для того чтобы найти определитель второго порядка нужно из произведения элементов главной диагонали вычесть произведение элементов по второй диагонали. Определителем третьего порядка называется число, обозначаемое и получаемое следующим образом: . Таким образом, эта формула даёт разложение определителя третьего порядка по элементам первой строки a11, a12, a13 и сводит вычисление определителя третьего порядка к вычислению определителей второго порядка. Аналогично можно ввести понятия определителей четвёртого, пятого и т.д. порядков, понижая их порядок разложением по элементам 1-ой строки, при этом знаки " +" и " –" у слагаемых чередуются. Итак, в отличие от матрицы, которая представляют собой таблицу чисел, определитель это число, которое определённым образом ставится в соответствие матрице. Свойства определителей 1. Определитель не меняется, если заменить его строки столбцами и обратно, например, для определителя третьего порядка . 2. При перестановке 2-х строк или столбцов определитель изменит знак на противоположный, т.е., например, 3.Если определитель имеет две одинаковые строки или столбца, то он равен нулю. . 4.Общий множитель строки или столбца можно выносить за знак определителя. . 5.Если все элементы какой–либо строки или столбца определителя равны нулю, то сам определитель равен нулю. 6.Если все элементы какой–либо строки или столбца определителя представлены в виде суммы 2-х слагаемых, то определитель можно представить в виде суммы 2-х определителей по формуле, например, . 7.Если к какой–либо строке (или столбцу) определителя прибавить соответствующие элементы другой строки (или столбца), умноженные на одно и тоже число, то определитель не изменит своей величины. Например, . Эти свойства определителей довольно часто используются при вычислении определителей и в различных задачах.
Лекция 2 МАТРИЦЫ Действия над матрицами Равенство матриц . Две матрицы A и B называются равными, если они имеют одинаковое число строк и столбцов и их соответствующие элементы равны aij = bij. Так если и , то A=B, если a11 = b11, a12 = b12, a21 = b21 и a22 = b22. Транспонирование . Рассмотрим произвольную матрицу A из m строк и n столбцов. Ей можно сопоставить такую матрицу B из n строк и m столбцов, у которой каждая строка является столбцом матрицы A с тем же номером (следовательно, каждый столбец является строкой матрицы A с тем же номером). Итак, если
, то . Эту матрицу B называют транспонированной матрицей A, а переход от A к B транспонированием . Таким образом, транспонирование – это перемена ролями строк и столбцов матрицы. Матрицу, транспонированную к матрице A, обычно обозначают AT. Связь между матрицей A и её транспонированной можно записать в виде . Сложение матриц. Пусть матрицы A и B состоят из одинакового числа строк и одинакового числа столбцов, т.е. имеют одинаковые размеры. Тогда для того, чтобы сложить матрицы A и B нужно к элементам матрицы A прибавить элементы матрицы B, стоящие на тех же местах. Таким образом, суммой двух матриц A и B называется матрица C, которая определяется по правилу, например, или Умножение матрицы на число . Для того чтобы умножить матрицу A на число k нужно каждый элемент матрицы A умножить на это число. Таким образом, произведение матрицы A на число k есть новая матрица, которая определяется по Правилу или . Умножение матриц . Эта операция осуществляется по своеобразному закону. Прежде всего, заметим, что размеры матриц–сомножителей должны быть согласованы. Перемножать можно только те матрицы, у которых число столбцов первой матрицы совпадает с числом строк второй матрицы. Произведением матрицы A не матрицу B называется новая матрица C=AB, элементы которой составляются следующим образом:
. Таким образом, например, чтобы получить у произведения (т.е. в матрице C) элемент, стоящий в 1-ой строке и 3-м столбце c13, нужно в 1-ой матрице взять 1-ую строку, во 2-ой – 3-й столбец, и затем элементы строки умножить на соответствующие элементы столбца и полученные произведения сложить. И другие элементы матрицы-произведения получаются с помощью аналогичного произведения строк первой матрицы на столбцы второй матрицы. В общем случае, если мы умножаем матрицу A = (aij) размера m× n на матрицу B = (bij) размера n× p, то получим матрицу C размера m× p, элементы которой вычисляются следующим образом: элемент cij получается в результате произведения элементов i-ой строки матрицы A на соответствующие элементы j-го столбца матрицы B и их сложения. Из этого правила следует, что всегда можно перемножать две квадратные матрицы одного порядка, в результате получим квадратную матрицу того же порядка. В частности, квадратную матрицу всегда можно умножить саму на себя, т.е. возвести в квадрат. Другим важным случаем является умножение матрицы–строки на матрицу–столбец, причём ширина первой должна быть равна высоте второй, в результате получим матрицу первого порядка (т.е. один элемент). Действительно, . Легко также проверить, что при умножении квадратной матрицы A на единичную матрицу E того же порядка вновь получим матрицу A, причём AE=EA=A. Обратная матрица Понятие обратной матрицы вводится только для квадратных матриц. Если A – квадратная матрица, то обратной для неё матрицей называется матрица, обозначаемая A-1 и удовлетворяющая условию . (Это определение вводится по аналогии с умножением чисел) Справедлива следующая теорема: Теорема.Для того чтобы квадратная матрица A имела обратную, необходимо и достаточно, чтобы её определитель был отличен от нуля. Итак, чтобы найти обратную матрицу нужно: 1. Найти определитель матрицы A. 2. Найти алгебраические дополнения Aij всех элементов матрицы A и составить матрицу , элементами которой являются числа Aij. 3. Найти матрицу, транспонированную полученной матрице , и умножить её на - это и будет обратная матрица . Аналогично для матриц второго порядка, обратной будет следующая матрица . Лекция 3 Основные понятия Системой m линейных уравнений с n неизвестными называется система вида где aij и bi (i=1, …, m; b=1, …, n) – некоторые известные числа, а x1, …, xn – неизвестные. В обозначении коэффициентов aij первый индекс iобозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент. Коэффициенты при неизвестных будем записывать в виде матрицы , которую назовём матрицей системы. Числа, стоящие в правых частях уравнений, b1, …, bm называются свободными членами. Совокупность n чисел c1, …, cn называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c1, …, cn вместо соответствующих неизвестных x1, …, xn. Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации: 1. Система может иметь единственное решение. 2. Система может иметь бесконечное множество решений. 3. Система вообще не имеет решения. Система линейных уравнений, имеющая хотя бы одно решение, называется совместной. В противном случае, т.е. если система не имеет решений, то она называется несовместной. Метод Крамера Рассмотрим систему 3-х линейных уравнений с тремя неизвестными: Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных, называется определителем системы. Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов
Теорема (правило Крамера). Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём
Метод Гаусса Ранее рассмотренные методы можно применять при решении только тех систем, в которых число уравнений совпадает с числом неизвестных, причём определитель системы должен быть отличен от нуля. Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений. Он заключается в последовательном исключении неизвестных из уравнений системы. Вновь рассмотрим систему из трёх уравнений с тремя неизвестными: . Первое уравнение оставим без изменения, а из 2-го и 3-го исключим слагаемые, содержащие x1. Для этого второе уравнение разделим на а21 и умножим на –а11, а затем сложим с 1-ым уравнением. Аналогично третье уравнение разделим на а31 и умножим на –а11, а затем сложим с первым. В результате исходная система примет вид: Теперь из последнего уравнения исключим слагаемое, содержащее x2. Для этого третье уравнение разделим на , умножим на и сложим со вторым. Тогда будем иметь систему уравнений: Отсюда из последнего уравнения легко найти x3, затем из 2-го уравнения x2 и, наконец, из 1-го – x1. При использовании метода Гаусса уравнения при необходимости можно менять местами. Часто вместо того, чтобы писать новую систему уравнений, ограничиваются тем, что выписывают расширенную матрицу системы: и затем приводят её к треугольному или диагональному виду с помощью элементарных преобразований. Кэлементарным преобразованиям матрицы относятся следующие преобразования: 1. перестановка строк или столбцов; 2. умножение строки на число, отличное от нуля; 3. прибавление к одной строке другие строки. Лекция 4 ПРЯМАЯ ЛИНИЯ НА ПЛОСКОСТИ Общее уравнение прямой. Любая прямая на плоскости может быть задана уравнением первого порядка
Ах + Ву + С = 0,
причем постоянные А, В не равны нулю одновременно, т.е. А2 + В2 ¹ 0. Это уравнение первого порядка называют общим уравнением прямой . В зависимости от значений постоянных А, В и С возможны следующие частные случаи: - C = 0, А ¹ 0, В ¹ 0 – прямая проходит через начало координат - А = 0, В ¹ 0, С ¹ 0 { By + C = 0}- прямая параллельна оси Ох - В = 0, А ¹ 0, С ¹ 0 { Ax + C = 0} – прямая параллельна оси Оу - В = С = 0, А ¹ 0 – прямая совпадает с осью Оу - А = С = 0, В ¹ 0 – прямая совпадает с осью Ох
Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.
Лекция 5 ПРЕДЕЛ ФУНКЦИИ Предел функции в точке. y f(x)
A + e A A - e
0 a - D a a + D x
Рисунок 1. Предел функции в точке. Пусть функция f(x) определена в некоторой окрестности точки х = а (т.е. в самой точке х = а функция может быть и не определена) Определение. Число А называется пределом функции f(x) при х®а, если для любого e> 0 существует такое число D> 0, что для всех х таких, что 0 < ï x - aï < D верно неравенство ï f(x) - Aï < e. То же определение может быть записано в другом виде: Если а - D < x < a + D, x ¹ a, то верно неравенство А - e < f(x) < A + e. Запись предела функции в точке: Определение . Если f(x) ® A1 при х ® а только при x < a, то - называется пределом функции f(x) в точке х = а слева, а если f(x) ® A2 при х ® а только при x > a, то называется пределом функции f(x) в точке х = а справа. Приведенное выше определение относится к случаю, когда функция f(x) не определена в самой точке х = а, но определена в некоторой сколь угодно малой окрестности этой точки. Пределы А1 и А2 называются также односторонними пределами функции f(x) в точке х = а. Также говорят, что А – конечный предел функции f(x). Лекция 6 ПРОИЗВОДНАЯ ФУНКЦИИ Понятие производной Определение. Производной функции f(x) в точке х = х0 называется предел отношения приращения функции в этой точке к приращению аргумента, если приращение аргумента стремится к нулю.
у f(x)
f(x0 +Dx) P Df f(x0) M
a b Dx 0 x0 x0 + Dx x
Рисунок 2. Геометрический смысл производной. Пусть f(x) определена на некотором промежутке (a, b). Тогда тангенс угла наклона секущей МР к графику функции. , где a - угол наклона касательной к графику функции f(x) в точке (x0, f(x0)). Фактически производная функции показывает как бы скорость изменения функции, как изменяется функция при изменении переменной. Физический смысл производной функции f(t), где t- время, а f(t)- закон движения (изменения координат) – мгновенная скорость движения. Соответственно, вторая производная функции - скорость изменения скорости, т.е. ускорение. Теорема. (Необходимое условие существования производной) Если функция f(x) имеет производную в точке х0, то она непрерывна в этой точке. Понятно, что это условие не является достаточным. Дифференциал функции. Пусть функция y = f(x) имеет производную в точке х: Тогда можно записать: , где a®0, при Dх®0. Следовательно: . Величина aDx- бесконечно малая более высокого порядка, чем f¢ (x)Dx, т.е. f¢ (x)Dx- главная часть приращения Dу. Правило Лопиталя. К разряду неопределенностей принято относить следующие соотношения: Теорема (правило Лопиталя). Если функции f(x) и g(x) дифференцируемы в вблизи точки а, непрерывны в точке а, g¢ (x) отлична от нуля вблизи а и f(a) = g(a) = 0, то предел отношения функций при х®а равен пределу отношения их производных, если этот предел (конечный или бесконечный) существует.
Лекция 7 Теорема. 1) Если функция f(x) имеет производную на отрезке [a, b] и возрастает на этом отрезке, то ее производная на этом отрезке неотрицательна, т.е. f¢ (x) ³ 0. 2) Если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на промежутке (а, b), причем f¢ (x) > 0 для a < x < b, то эта функция возрастает на отрезке [a, b]. Аналогично можно сделать вывод о том, что если функция f(x) убывает на отрезке [a, b], то f¢ (x)£ 0 на этом отрезке. Если f¢ (x)< 0 в промежутке (a, b), то f(x) убывает на отрезке [a, b]. Конечно, данное утверждение справедливо, если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на интервале (a, b). Эту теорему можно проиллюстрировать геометрически:
y y
j j j j x x
Рисунок 4. Геометрическая иллюстрация признака возрастания и убывания функции. Точки экстремума. Определение. Функция f(x) имеет в точке х1 максимум, если ее значение в этой точке больше значений во всех точках некоторого интервала, содержащего точку х1. Функция f(x) имеет в точке х2 минимум, если f(x2 +Dx) > f(x2) при любом Dх (Dх может быть и отрицательным). Асимптоты. При исследовании функций часто бывает, что при удалении координаты х точки кривой в бесконечность кривая неограниченно приближается к некоторой прямой. Вертикальные асимптоты. Из определения асимптоты следует, что если или или , то прямая х = а – асимптота кривой y = f(x). Наклонные асимптоты . Если существуют и конечны следующие пределы . , то кривая y = f(x) имеет наклонную асимптоту y = kx + b. Отметим, что горизонтальные асимптоты являются частным случаем наклонных асимптот при k =0. Схема исследования функций Процесс исследования функции состоит из нескольких этапов. Для наиболее полного представления о поведении функции и характере ее графика необходимо отыскать: 1) Область существования функции. Это понятие включает в себя и область значений и область определения функции. 2) Точки разрыва. (Если они имеются). 3) Интервалы возрастания и убывания. 4) Точки максимума и минимума. 5) Максимальное и минимальное значение функции на ее области определения. 6) Области выпуклости и вогнутости. 7) Точки перегиба.(Если они имеются). 8) Асимптоты.(Если они имеются). 9) Построение графика.
Лекция 8 НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ Первообразная функция.
Определение: Функция F(x) называется первообразной функцией функции f(x) на отрезке [a, b], если в любой точке этого отрезка верно равенство: F¢ (x) = f(x).
Надо отметить, что первообразных для одной и той же функции может быть бесконечно много. Они будут отличаться друг от друга на некоторое постоянное число.
F1(x) = F2(x) + C.
Неопределенный интеграл.
Определение: Неопределенным интегралом функции f(x) называется совокупность первообразных функций, которые определены соотношением: F(x) + C. Записывают:
Условием существования неопределенного интеграла на некотором отрезке является непрерывность функции на этом отрезке. Свойства: 1. 2. 3. 4. где u, v, w – некоторые функции от х. 5.
Таблица интегралов Таблица 1 – Интегралы некоторых элементарных функций
Продолжение таблицы 1
Методы интегрирования. Рассмотрим три основных метода интегрирования.
Интегрирование по частям. Способ основан на примении формулы интегрирования по частям ;
Пример. Как видно, последовательное применение формулы интегрирования по частям позволяет постепенно упростить функцию и привести интеграл к табличному.
Вопросы для самоконтроля 1. Первообразная функция и неопределенный интеграл, его геометрический смысл. 2. Свойства неопределённого интеграла. 3. Таблица интегралов некоторых функций. 4. Метод подстановки (замены переменной) в неопределенном интеграле. 5. Интегрирование по частям в неопределенном интеграле. 6. Интегрирование рациональных дробей. Лекция 9 ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ 8)
7) Для произвольных чисел a, b, c справедливо равенство:
Разумеется, это равенство выполняется, если существует каждый из входящих в него интегралов.
8)
Замена переменной. Пусть задан интеграл , где f(x) – непрерывная функция на отрезке [a, b]. Введем новую переменную в соответствии с формулой x = j(t). Тогда если 1) j(a) = а, j(b) = b 2) j(t) и j¢ (t) непрерывны на отрезке [a, b] 3) f(j(t)) определена на отрезке [a, b], то
Тогда
Интегрирование по частям.
Если функции u = j(x) и v = y(x) непрерывны на отрезке [a, b], а также непрерывны на этом отрезке их производные, то справедлива формула интегрирования по частям:
Министерство сельского хозяйства Российской Федерации Федеральное государственное образовательное учреждение высшего образования «Саратовский государственный аграрный университет Имени Н.И. Вавилова» МАТЕМАТИКА Краткий курс лекций для студентов 1 курса
Саратов 2016
Лекция 1 ОПРЕДЕЛИТЕЛИ ВТОРОГО И ТРЕТЬЕГО ПОРЯДКОВ Понятие определителей
Определителем второго порядка называется число, получаемое следующим образом: a11a22 – a12a21. Определитель обозначается символом . Итак, для того чтобы найти определитель второго порядка нужно из произведения элементов главной диагонали вычесть произведение элементов по второй диагонали. Определителем третьего порядка называется число, обозначаемое и получаемое следующим образом: . Таким образом, эта формула даёт разложение определителя третьего порядка по элементам первой строки a11, a12, a13 и сводит вычисление определителя третьего порядка к вычислению определителей второго порядка. Аналогично можно ввести понятия определителей четвёртого, пятого и т.д. порядков, понижая их порядок разложением по элементам 1-ой строки, при этом знаки " +" и " –" у слагаемых чередуются. Итак, в отличие от матрицы, которая представляют собой таблицу чисел, определитель это число, которое определённым образом ставится в соответствие матрице. Свойства определителей 1. Определитель не меняется, если заменить его строки столбцами и обратно, например, для определителя третьего порядка . 2. При перестановке 2-х строк или столбцов определитель изменит знак на противоположный, т.е., например, 3.Если определитель имеет две одинаковые строки или столбца, то он равен нулю. . 4.Общий множитель строки или столбца можно выносить за знак определителя. . 5.Если все элементы какой–либо строки или столбца определителя равны нулю, то сам определитель равен нулю. 6.Если все элементы какой–либо строки или столбца определителя представлены в виде суммы 2-х слагаемых, то определитель можно представить в виде суммы 2-х определителей по формуле, например, . 7.Если к какой–либо строке (или столбцу) определителя прибавить соответствующие элементы другой строки (или столбца), умноженные на одно и тоже число, то определитель не изменит своей величины. Например, . Эти свойства определителей довольно часто используются при вычислении определителей и в различных задачах.
|
Последнее изменение этой страницы: 2017-03-15; Просмотров: 429; Нарушение авторского права страницы