Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ОПРЕДЕЛИТЕЛИ ВТОРОГО И ТРЕТЬЕГО ПОРЯДКОВ



Министерство сельского хозяйства Российской Федерации

Федеральное государственное образовательное учреждение

высшего образования

«Саратовский государственный аграрный университет

Имени Н.И. Вавилова»

МАТЕМАТИКА

Краткий курс лекций

для студентов 1 курса

 

 

Саратов 2016

 

Лекция 1

ОПРЕДЕЛИТЕЛИ ВТОРОГО И ТРЕТЬЕГО ПОРЯДКОВ

Понятие определителей

 

Определителем второго порядка называется число, получаемое следующим образом: a11a22 – a12a21. Определитель обозначается символом

.

Итак, для того чтобы найти определитель второго порядка нужно из произведения элементов главной диагонали вычесть произведение элементов по второй диагонали.

Определителем третьего порядка называется число, обозначаемое и получаемое следующим образом:

.

Таким образом, эта формула даёт разложение определителя третьего порядка по элементам первой строки a11, a12, a13 и сводит вычисление определителя третьего порядка к вычислению определителей второго порядка.

Аналогично можно ввести понятия определителей четвёртого, пятого и т.д. порядков, понижая их порядок разложением по элементам 1-ой строки, при этом знаки " +" и " –" у слагаемых чередуются.

Итак, в отличие от матрицы, которая представляют собой таблицу чисел, определитель это число, которое определённым образом ставится в соответствие матрице.

Свойства определителей

1. Определитель не меняется, если заменить его строки столбцами и обратно, например, для определителя третьего порядка

.

2. При перестановке 2-х строк или столбцов определитель изменит знак на противоположный, т.е., например,

3.Если определитель имеет две одинаковые строки или столбца, то он равен нулю.

.

4.Общий множитель строки или столбца можно выносить за знак определителя.

.

5.Если все элементы какой–либо строки или столбца определителя равны нулю, то сам определитель равен нулю.

6.Если все элементы какой–либо строки или столбца определителя представлены в виде суммы 2-х слагаемых, то определитель можно представить в виде суммы 2-х определителей по формуле, например,

.

7.Если к какой–либо строке (или столбцу) определителя прибавить соответствующие элементы другой строки (или столбца), умноженные на одно и тоже число, то определитель не изменит своей величины. Например,

.

Эти свойства определителей довольно часто используются при вычислении определителей и в различных задачах.

 

Лекция 2

МАТРИЦЫ

Действия над матрицами

Равенство матриц . Две матрицы A и B называются равными, если они имеют одинаковое число строк и столбцов и их соответствующие элементы равны aij = bij. Так если и , то A=B, если a11 = b11, a12 = b12, a21 = b21 и a22 = b22.

Транспонирование . Рассмотрим произвольную матрицу A из m строк и n столбцов. Ей можно сопоставить такую матрицу B из n строк и m столбцов, у которой каждая строка является столбцом матрицы A с тем же номером (следовательно, каждый столбец является строкой матрицы A с тем же номером). Итак, если

 

, то .

Эту матрицу B называют транспонированной матрицей A, а переход от A к B транспонированием .

Таким образом, транспонирование – это перемена ролями строк и столбцов матрицы. Матрицу, транспонированную к матрице A, обычно обозначают AT.

Связь между матрицей A и её транспонированной можно записать в виде .

Сложение матриц. Пусть матрицы A и B состоят из одинакового числа строк и одинакового числа столбцов, т.е. имеют одинаковые размеры. Тогда для того, чтобы сложить матрицы A и B нужно к элементам матрицы A прибавить элементы матрицы B, стоящие на тех же местах. Таким образом, суммой двух матриц A и B называется матрица C, которая определяется по правилу, например,

или

Умножение матрицы на число . Для того чтобы умножить матрицу A на число k нужно каждый элемент матрицы A умножить на это число. Таким образом, произведение матрицы A на число k есть новая матрица, которая определяется по

Правилу

или .

Умножение матриц . Эта операция осуществляется по своеобразному закону. Прежде всего, заметим, что размеры матриц–сомножителей должны быть согласованы. Перемножать можно только те матрицы, у которых число столбцов первой матрицы совпадает с числом строк второй матрицы. Произведением матрицы A не матрицу B называется новая матрица C=AB, элементы которой составляются следующим образом:

 

.

Таким образом, например, чтобы получить у произведения (т.е. в матрице C) элемент, стоящий в 1-ой строке и 3-м столбце c13, нужно в 1-ой матрице взять 1-ую строку, во 2-ой – 3-й столбец, и затем элементы строки умножить на соответствующие элементы столбца и полученные произведения сложить. И другие элементы матрицы-произведения получаются с помощью аналогичного произведения строк первой матрицы на столбцы второй матрицы.

В общем случае, если мы умножаем матрицу A = (aij) размера m× n на матрицу B = (bij) размера n× p, то получим матрицу C размера m× p, элементы которой вычисляются следующим образом: элемент cij получается в результате произведения элементов i-ой строки матрицы A на соответствующие элементы j-го столбца матрицы B и их сложения.

Из этого правила следует, что всегда можно перемножать две квадратные матрицы одного порядка, в результате получим квадратную матрицу того же порядка. В частности, квадратную матрицу всегда можно умножить саму на себя, т.е. возвести в квадрат.

Другим важным случаем является умножение матрицы–строки на матрицу–столбец, причём ширина первой должна быть равна высоте второй, в результате получим матрицу первого порядка (т.е. один элемент). Действительно,

.

Легко также проверить, что при умножении квадратной матрицы A на единичную матрицу E того же порядка вновь получим матрицу A, причём AE=EA=A.

Обратная матрица

Понятие обратной матрицы вводится только для квадратных матриц.

Если A – квадратная матрица, то обратной для неё матрицей называется матрица, обозначаемая A-1 и удовлетворяющая условию . (Это определение вводится по аналогии с умножением чисел)

Справедлива следующая теорема:

Теорема.Для того чтобы квадратная матрица A имела обратную, необходимо и достаточно, чтобы её определитель был отличен от нуля.

Итак, чтобы найти обратную матрицу нужно:

1. Найти определитель матрицы A.

2. Найти алгебраические дополнения Aij всех элементов матрицы A и составить матрицу , элементами которой являются числа Aij.

3. Найти матрицу, транспонированную полученной матрице , и умножить её на - это и будет обратная матрица .

Аналогично для матриц второго порядка, обратной будет следующая матрица .

Лекция 3

Основные понятия

Системой m линейных уравнений с n неизвестными называется система вида

где aij и bi (i=1, …, m; b=1, …, n) – некоторые известные числа, а x1, …, xn – неизвестные. В обозначении коэффициентов aij первый индекс iобозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент.

Коэффициенты при неизвестных будем записывать в виде матрицы

, которую назовём матрицей системы.

Числа, стоящие в правых частях уравнений, b1, …, bm называются свободными членами.

Совокупность n чисел c1, …, cn называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c1, …, cn вместо соответствующих неизвестных x1, …, xn.

Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации:

1. Система может иметь единственное решение.

2. Система может иметь бесконечное множество решений.

3. Система вообще не имеет решения.

Система линейных уравнений, имеющая хотя бы одно решение, называется совместной. В противном случае, т.е. если система не имеет решений, то она называется несовместной.

Метод Крамера

Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:

Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных,

называется определителем системы.

Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов

 

Теорема (правило Крамера).

Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём

Метод Гаусса

Ранее рассмотренные методы можно применять при решении только тех систем, в которых число уравнений совпадает с числом неизвестных, причём определитель системы должен быть отличен от нуля. Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений. Он заключается в последовательном исключении неизвестных из уравнений системы.

Вновь рассмотрим систему из трёх уравнений с тремя неизвестными:

.

Первое уравнение оставим без изменения, а из 2-го и 3-го исключим слагаемые, содержащие x1. Для этого второе уравнение разделим на а21 и умножим на –а11, а затем сложим с 1-ым уравнением. Аналогично третье уравнение разделим на а31 и умножим на –а11, а затем сложим с первым. В результате исходная система примет вид:

Теперь из последнего уравнения исключим слагаемое, содержащее x2. Для этого третье уравнение разделим на , умножим на и сложим со вторым. Тогда будем иметь систему уравнений:

Отсюда из последнего уравнения легко найти x3, затем из 2-го уравнения x2 и, наконец, из 1-го – x1.

При использовании метода Гаусса уравнения при необходимости можно менять местами.

Часто вместо того, чтобы писать новую систему уравнений, ограничиваются тем, что выписывают расширенную матрицу системы:

и затем приводят её к треугольному или диагональному виду с помощью элементарных преобразований.

Кэлементарным преобразованиям матрицы относятся следующие преобразования:

1. перестановка строк или столбцов;

2. умножение строки на число, отличное от нуля;

3. прибавление к одной строке другие строки.

Лекция 4

ПРЯМАЯ ЛИНИЯ НА ПЛОСКОСТИ

Общее уравнение прямой.

Любая прямая на плоскости может быть задана уравнением первого порядка

 

Ах + Ву + С = 0,

 

причем постоянные А, В не равны нулю одновременно, т.е. А2 + В2 ¹ 0. Это уравнение первого порядка называют общим уравнением прямой .

В зависимости от значений постоянных А, В и С возможны следующие частные случаи:

- C = 0, А ¹ 0, В ¹ 0 – прямая проходит через начало координат

- А = 0, В ¹ 0, С ¹ 0 { By + C = 0}- прямая параллельна оси Ох

- В = 0, А ¹ 0, С ¹ 0 { Ax + C = 0} – прямая параллельна оси Оу

- В = С = 0, А ¹ 0 – прямая совпадает с осью Оу

- А = С = 0, В ¹ 0 – прямая совпадает с осью Ох

 

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.

 

Лекция 5

ПРЕДЕЛ ФУНКЦИИ

Предел функции в точке.

y f(x)

 

 

A + e

A

A - e

 

0 a - D a a + D x

 

 

Рисунок 1. Предел функции в точке.

Пусть функция f(x) определена в некоторой окрестности точки х = а (т.е. в самой точке х = а функция может быть и не определена)

Определение. Число А называется пределом функции f(x) при х®а, если для любого e> 0 существует такое число D> 0, что для всех х таких, что

0 < ï x - aï < D

верно неравенство ï f(x) - Aï < e.

То же определение может быть записано в другом виде:

Если а - D < x < a + D, x ¹ a, то верно неравенство А - e < f(x) < A + e.

Запись предела функции в точке:

Определение .

Если f(x) ® A1 при х ® а только при x < a, то - называется пределом функции f(x) в точке х = а слева, а если f(x) ® A2 при х ® а только при x > a, то называется пределом функции f(x) в точке х = а справа.

Приведенное выше определение относится к случаю, когда функция f(x) не определена в самой точке х = а, но определена в некоторой сколь угодно малой окрестности этой точки.

Пределы А1 и А2 называются также односторонними пределами функции f(x) в точке х = а. Также говорят, что А – конечный предел функции f(x).

Лекция 6

ПРОИЗВОДНАЯ ФУНКЦИИ

Понятие производной

Определение. Производной функции f(x) в точке х = х0 называется предел отношения приращения функции в этой точке к приращению аргумента, если приращение аргумента стремится к нулю.

 

у

f(x)

 

 

f(x0 +Dx) P

Df

f(x0) M

 

a b Dx

0 x0 x0 + Dx x

 

Рисунок 2. Геометрический смысл производной.

Пусть f(x) определена на некотором промежутке (a, b). Тогда тангенс угла наклона секущей МР к графику функции.

,

где a - угол наклона касательной к графику функции f(x) в точке (x0, f(x0)).

Фактически производная функции показывает как бы скорость изменения функции, как изменяется функция при изменении переменной.

Физический смысл производной функции f(t), где t- время, а f(t)- закон движения (изменения координат) – мгновенная скорость движения.

Соответственно, вторая производная функции - скорость изменения скорости, т.е. ускорение.

Теорема. (Необходимое условие существования производной) Если функция f(x) имеет производную в точке х0, то она непрерывна в этой точке.

Понятно, что это условие не является достаточным.

Дифференциал функции.

Пусть функция y = f(x) имеет производную в точке х:

Тогда можно записать: , где a®0, при Dх®0.

Следовательно: .

Величина aDx- бесконечно малая более высокого порядка, чем f¢ (x)Dx, т.е. f¢ (x)Dx- главная часть приращения Dу.

Правило Лопиталя.

К разряду неопределенностей принято относить следующие соотношения:

Теорема (правило Лопиталя). Если функции f(x) и g(x) дифференцируемы в вблизи точки а, непрерывны в точке а, g¢ (x) отлична от нуля вблизи а и f(a) = g(a) = 0, то предел отношения функций при х®а равен пределу отношения их производных, если этот предел (конечный или бесконечный) существует.

Лекция 7

Теорема.

1) Если функция f(x) имеет производную на отрезке [a, b] и возрастает на этом отрезке, то ее производная на этом отрезке неотрицательна, т.е. f¢ (x) ³ 0.

2) Если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на промежутке (а, b), причем f¢ (x) > 0 для a < x < b, то эта функция возрастает на отрезке [a, b].

Аналогично можно сделать вывод о том, что если функция f(x) убывает на отрезке [a, b], то f¢ (x)£ 0 на этом отрезке. Если f¢ (x)< 0 в промежутке (a, b), то f(x) убывает на отрезке [a, b].

Конечно, данное утверждение справедливо, если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на интервале (a, b).

Эту теорему можно проиллюстрировать геометрически:

 

y y

 

j j j j

x x

 

Рисунок 4. Геометрическая иллюстрация признака возрастания и убывания функции.

Точки экстремума.

Определение. Функция f(x) имеет в точке х1 максимум, если ее значение в этой точке больше значений во всех точках некоторого интервала, содержащего точку х1. Функция f(x) имеет в точке х2 минимум, если f(x2 +Dx) > f(x2) при любом Dх (Dх может быть и отрицательным).

Асимптоты.

При исследовании функций часто бывает, что при удалении координаты х точки кривой в бесконечность кривая неограниченно приближается к некоторой прямой.

Вертикальные асимптоты.

Из определения асимптоты следует, что если или или , то прямая х = а – асимптота кривой y = f(x).

Наклонные асимптоты .

Если существуют и конечны следующие пределы

. ,

то кривая y = f(x) имеет наклонную асимптоту y = kx + b.

Отметим, что горизонтальные асимптоты являются частным случаем наклонных асимптот при k =0.

Схема исследования функций

Процесс исследования функции состоит из нескольких этапов. Для наиболее полного представления о поведении функции и характере ее графика необходимо отыскать:

1) Область существования функции.

Это понятие включает в себя и область значений и область определения функции.

2) Точки разрыва. (Если они имеются).

3) Интервалы возрастания и убывания.

4) Точки максимума и минимума.

5) Максимальное и минимальное значение функции на ее области определения.

6) Области выпуклости и вогнутости.

7) Точки перегиба.(Если они имеются).

8) Асимптоты.(Если они имеются).

9) Построение графика.

 


Лекция 8

НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

Первообразная функция.

 

Определение: Функция F(x) называется первообразной функцией функции f(x) на отрезке [a, b], если в любой точке этого отрезка верно равенство:

F¢ (x) = f(x).

 

Надо отметить, что первообразных для одной и той же функции может быть бесконечно много. Они будут отличаться друг от друга на некоторое постоянное число.

 

F1(x) = F2(x) + C.

 

Неопределенный интеграл.

 

Определение: Неопределенным интегралом функции f(x) называется совокупность первообразных функций, которые определены соотношением:

F(x) + C.

Записывают:

 

Условием существования неопределенного интеграла на некотором отрезке является непрерывность функции на этом отрезке.

Свойства:

1.

2.

3.

4. где u, v, w – некоторые функции от х.

5.

 

Таблица интегралов

Таблица 1 – Интегралы некоторых элементарных функций

Интеграл Значение Интеграл Значение
-ln½ cosx½ +C ex + C
ln½ sinx½ + C sinx + C

Продолжение таблицы 1

  Интеграл Значение   Интеграл Значение
-cosx + C
tgx + C
-ctgx + C
ln arcsin + C

 

Методы интегрирования.

Рассмотрим три основных метода интегрирования.

 

Интегрирование по частям.

Способ основан на примении формулы интегрирования по частям ;

 

Пример.

Как видно, последовательное применение формулы интегрирования по частям позволяет постепенно упростить функцию и привести интеграл к табличному.

 

Вопросы для самоконтроля

1. Первообразная функция и неопределенный интеграл, его геометрический смысл.

2. Свойства неопределённого интеграла.

3. Таблица интегралов некоторых функций.

4. Метод подстановки (замены переменной) в неопределенном интеграле.

5. Интегрирование по частям в неопределенном интеграле.

6. Интегрирование рациональных дробей.


Лекция 9

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

8)

7) Для произвольных чисел a, b, c справедливо равенство:

 

 

Разумеется, это равенство выполняется, если существует каждый из входящих в него интегралов.

 

8)

 

Замена переменной.

Пусть задан интеграл , где f(x) – непрерывная функция на отрезке [a, b].

Введем новую переменную в соответствии с формулой x = j(t).

Тогда если

1) j(a) = а, j(b) = b

2) j(t) и j¢ (t) непрерывны на отрезке [a, b]

3) f(j(t)) определена на отрезке [a, b], то

 

 

Тогда

 

Интегрирование по частям.

 

Если функции u = j(x) и v = y(x) непрерывны на отрезке [a, b], а также непрерывны на этом отрезке их производные, то справедлива формула интегрирования по частям:

 

 

Министерство сельского хозяйства Российской Федерации

Федеральное государственное образовательное учреждение

высшего образования

«Саратовский государственный аграрный университет

Имени Н.И. Вавилова»

МАТЕМАТИКА

Краткий курс лекций

для студентов 1 курса

 

 

Саратов 2016

 

Лекция 1

ОПРЕДЕЛИТЕЛИ ВТОРОГО И ТРЕТЬЕГО ПОРЯДКОВ

Понятие определителей

 

Определителем второго порядка называется число, получаемое следующим образом: a11a22 – a12a21. Определитель обозначается символом

.

Итак, для того чтобы найти определитель второго порядка нужно из произведения элементов главной диагонали вычесть произведение элементов по второй диагонали.

Определителем третьего порядка называется число, обозначаемое и получаемое следующим образом:

.

Таким образом, эта формула даёт разложение определителя третьего порядка по элементам первой строки a11, a12, a13 и сводит вычисление определителя третьего порядка к вычислению определителей второго порядка.

Аналогично можно ввести понятия определителей четвёртого, пятого и т.д. порядков, понижая их порядок разложением по элементам 1-ой строки, при этом знаки " +" и " –" у слагаемых чередуются.

Итак, в отличие от матрицы, которая представляют собой таблицу чисел, определитель это число, которое определённым образом ставится в соответствие матрице.

Свойства определителей

1. Определитель не меняется, если заменить его строки столбцами и обратно, например, для определителя третьего порядка

.

2. При перестановке 2-х строк или столбцов определитель изменит знак на противоположный, т.е., например,

3.Если определитель имеет две одинаковые строки или столбца, то он равен нулю.

.

4.Общий множитель строки или столбца можно выносить за знак определителя.

.

5.Если все элементы какой–либо строки или столбца определителя равны нулю, то сам определитель равен нулю.

6.Если все элементы какой–либо строки или столбца определителя представлены в виде суммы 2-х слагаемых, то определитель можно представить в виде суммы 2-х определителей по формуле, например,

.

7.Если к какой–либо строке (или столбцу) определителя прибавить соответствующие элементы другой строки (или столбца), умноженные на одно и тоже число, то определитель не изменит своей величины. Например,

.

Эти свойства определителей довольно часто используются при вычислении определителей и в различных задачах.

 


Поделиться:



Последнее изменение этой страницы: 2017-03-15; Просмотров: 429; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.161 с.)
Главная | Случайная страница | Обратная связь