![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ
Основные понятия Системой m линейных уравнений с n неизвестными называется система вида где aij и bi (i=1, …, m; b=1, …, n) – некоторые известные числа, а x1, …, xn – неизвестные. В обозначении коэффициентов aij первый индекс iобозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент. Коэффициенты при неизвестных будем записывать в виде матрицы
Числа, стоящие в правых частях уравнений, b1, …, bm называются свободными членами. Совокупность n чисел c1, …, cn называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c1, …, cn вместо соответствующих неизвестных x1, …, xn. Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации: 1. Система может иметь единственное решение. 2. Система может иметь бесконечное множество решений. 3. Система вообще не имеет решения. Система линейных уравнений, имеющая хотя бы одно решение, называется совместной. В противном случае, т.е. если система не имеет решений, то она называется несовместной. Матричный метод решения систем Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:
Рассмотрим матрицу системы и матрицы столбцы неизвестных и свободных членов Найдем произведение т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде
Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением. Пусть определитель матрицы отличен от нуля |A| ≠ 0. Тогда матричное уравнение решается следующим образом. Умножим обе части уравнения слева на матрицу A-1, обратную матрице А:
Поскольку A-1A = E и E∙ X = X, то получаем решение матричного уравнения в виде X = A-1B. Метод Крамера Рассмотрим систему 3-х линейных уравнений с тремя неизвестными: Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных, называется определителем системы. Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов
Теорема (правило Крамера). Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём Метод Гаусса Ранее рассмотренные методы можно применять при решении только тех систем, в которых число уравнений совпадает с числом неизвестных, причём определитель системы должен быть отличен от нуля. Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений. Он заключается в последовательном исключении неизвестных из уравнений системы. Вновь рассмотрим систему из трёх уравнений с тремя неизвестными:
Первое уравнение оставим без изменения, а из 2-го и 3-го исключим слагаемые, содержащие x1. Для этого второе уравнение разделим на а21 и умножим на –а11, а затем сложим с 1-ым уравнением. Аналогично третье уравнение разделим на а31 и умножим на –а11, а затем сложим с первым. В результате исходная система примет вид: Теперь из последнего уравнения исключим слагаемое, содержащее x2. Для этого третье уравнение разделим на Отсюда из последнего уравнения легко найти x3, затем из 2-го уравнения x2 и, наконец, из 1-го – x1. При использовании метода Гаусса уравнения при необходимости можно менять местами. Часто вместо того, чтобы писать новую систему уравнений, ограничиваются тем, что выписывают расширенную матрицу системы: и затем приводят её к треугольному или диагональному виду с помощью элементарных преобразований. Кэлементарным преобразованиям матрицы относятся следующие преобразования: 1. перестановка строк или столбцов; 2. умножение строки на число, отличное от нуля; 3. прибавление к одной строке другие строки. Лекция 4 ПРЯМАЯ ЛИНИЯ НА ПЛОСКОСТИ |
Последнее изменение этой страницы: 2017-03-15; Просмотров: 414; Нарушение авторского права страницы