Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Предел функции при стремлении аргумента к бесконечности.



Определение. Число А называется пределом функции f(x) при х®¥, если для любого числа e> 0 существует такое число М> 0, что для всех х, ï хï > M выполняется неравенство

При этом предполагается, что функция f(x) определена в окрестности бесконечности.

Записывают:

Основные теоремы о пределах.

Теорема 1. , где С = const.

Следующие теоремы справедливы при предположении, что функции f(x) и g(x) имеют конечные пределы при х®а.

Теорема 2.

Теорема 3.

Следствие.

Теорема 4. при

Бесконечно малые и бесконечно большие функции.

Определение. Функция f(x) называется бесконечно малой при х®а, где а может быть числом или одной из величин ¥, +¥ или -¥, если .

Свойства бесконечно малых функций:

1) Сумма фиксированного числа бесконечно малых функций при х®а тоже бесконечно малая функция при х®а.

2) Произведение фиксированного числа бесконечно малых функций при х®а тоже бесконечно малая функция при х®а.

3) Произведение бесконечно малой функции на функцию, ограниченную вблизи точки х = а является бесконечно малой функцией при х®а.

4) Частное от деления бесконечно малой функции на функцию, предел которой не равен нулю есть величина бесконечно малая.

Определение. Функция называется бесконечно большой при х®а, где а – число или одна из величин +¥ или -¥, если , где А – число или одна из величин +¥ или -¥.

Связь бесконечно больших и бесконечно малых функций осуществляется в соответствии со следующей теоремой.

Теорема. Если f(x)®0 при х®а (если х®¥ ) и не обращается в ноль, то

Некоторые замечательные пределы.

Первый замечательный предел.

Второй замечательный предел.

Нарушение ограничений, накладываемых на функции при вычислении их пределов, приводит к неопределенностям вида , , , , и т.д.

Существуют различные приемы раскрытия данных неопределенностей:

деление числителя и знаменателя на старшую степень переменной (при ); сокращение на множитель, создающий неопределенность; применение “замечательных” пределов и т.п.

Лекция 6

ПРОИЗВОДНАЯ ФУНКЦИИ

Понятие производной

Определение. Производной функции f(x) в точке х = х0 называется предел отношения приращения функции в этой точке к приращению аргумента, если приращение аргумента стремится к нулю.

 

у

f(x)

 

 

f(x0 +Dx) P

Df

f(x0) M

 

a b Dx

0 x0 x0 + Dx x

 

Рисунок 2. Геометрический смысл производной.

Пусть f(x) определена на некотором промежутке (a, b). Тогда тангенс угла наклона секущей МР к графику функции.

,

где a - угол наклона касательной к графику функции f(x) в точке (x0, f(x0)).

Фактически производная функции показывает как бы скорость изменения функции, как изменяется функция при изменении переменной.

Физический смысл производной функции f(t), где t- время, а f(t)- закон движения (изменения координат) – мгновенная скорость движения.

Соответственно, вторая производная функции - скорость изменения скорости, т.е. ускорение.

Теорема. (Необходимое условие существования производной) Если функция f(x) имеет производную в точке х0, то она непрерывна в этой точке.

Понятно, что это условие не является достаточным.

Основные правила дифференцирования.

Обозначим f(x) = u, g(x) = v- функции, дифференцируемые в точке х.

1) (u ± v)¢ = u¢ ± v¢

2) (u× v)¢ = u× v¢ + u¢ × v

3) , если v ¹ 0

Эти правила могут быть легко доказаны на основе теорем о пределах.

Производные основных элементарных функций.

1)С¢ = 0; 9)

2)(xm)¢ = mxm-1; 10)

3) 11)

4) 12)

5) 13)

6) 14)

7) 15)

8) 16)

Производная сложной функции.

Теорема. Пусть y = f(x); u = g(x), причем область значений функции u входит в область определения функции f. Тогда

Дифференциал функции.

Пусть функция y = f(x) имеет производную в точке х:

Тогда можно записать: , где a®0, при Dх®0.

Следовательно: .

Величина aDx- бесконечно малая более высокого порядка, чем f¢ (x)Dx, т.е. f¢ (x)Dx- главная часть приращения Dу.

Определение. Дифференциалом функции f(x) в точке х называется главня линейная часть приращения функции.

Обозначается dy или df(x). Из определения следует, что dy = f¢ (x)Dx или dy = f¢ (x)dx.

Можно также записать:


Поделиться:



Последнее изменение этой страницы: 2017-03-15; Просмотров: 496; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.02 с.)
Главная | Случайная страница | Обратная связь