Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Поглощение воды. Транспирация. Коэффициент увлажнения и типы местообита-ний (аридные, гумидные).
На рисунке показано первичное строение корня типичного двудольного растения. Основная масса воды поглощается более молодыми частями корня в зоне корневых волосков. По мере роста корня в почве на нем постоянно образуются новые корневые волоски, а старые отмирают. Новые корневые волоски возникают на некотором расстоянии позади зоны растяжения. Эти волоски представляют собой трубчатые выросты эпидермальных клеток (рис. 13.17), существенно увеличивающие поверхность, способную поглощать воду и минеральные соли. Они вступают в тесный контакт с частицами почвы. На рисунке схематично показаны пути движения воды по корню. В корне существует градиент водного потенциала — от более высокого в клетках, образующих корневые волоски, к более низкому в клетках, примыкающих к ксилеме. Этот градиент поддерживается двумя способами: 1) за счет движения воды вверх по ксилеме, при котором, как мы уже говорили, в ксилеме создается натяжение (отрицательное давление) и тем самым понижается водный потенциал ксилемного сока; 2) за счет того, что осмотический потенциал ксилемного сока более низкий (более отрицательный) по сравнению с осмотическим потенциалом разбавленного почвенного раствора. Вода движется через корень по тем же путям, что и в листьях, а именно по апопласту, симпласту и через вакуоли. По мере того как вода поднимается вверх по корневой ксилеме, ее замещает вода из окружающих паренхимных клеток, например из клетки 1 на рисунке. В результате водный потенциал этой клетки снижается и в нее устремляется вода из соседней клетки 2 благодаря осмосу или просто по симпласту, как описано в разд. 13.3.2 для мезофилла листа. Тогда в свою очередь снижается и водный потенциал клетки 2, в нее начинает поступать вода из клетки 3 и так далее через весь корень до самого эпидермиса, образующего волоски. Водный потенциал почвенного раствора выше, чем в клетках эпидермиса и в корневых волосках. Следовательно, вода проникает в корень извне путем осмоса. Апопластный транспорт в корне Апопластный транспорт в корне происходит примерно так же, как в листьях, но с одним существенным отличием. Когда вода, продвигаясь по клеточным стенкам, достигает эндодермы, путь ей преграждает водонепроницаемое вещество, называемое суберином. Оно откладывается по периметру эндодермальной клетки в ее антиклинальных стенках, образуя так называемый поясок Каспари (рис. 13.18, Б). В результате вода с растворенными в ней веществами (в основном диссоциированными на ионы солями) должна сначала проникнуть через плазмалемму этой клетки в ее цитоплазму, а потом выйти «с другой стороны». Таким способом клетки эндодермы контролируют и регулируют движение растворов по пути к ксилеме. Такой контроль необходим для защиты побегов от проникновения в них токсичных веществ, бо-лезнетвореных бактерий, грибов и других вредных агентов. С возрастом отложение суберина в эндодермальных клетках корня увеличивается, и это препятствует нормальному выходу воды и растворенных солей через внутренние танген-тальные клеточные стенки (рис. 13.18, Б). Однако в таких стенках могут сохраняться поры и проходящие через них плазмодесмы и, кроме того, остаются так называемые «пропускные» клетки, у которых не происходит дополнительного утолщения стенки и через которые свободно проходят вода и растворенные вещества. Количественное соотношение в корне апопластного, симпластного и вакуолярного транспортов воды не известно. Транспирация — процесс движения воды через растение и её испарение через наружные органы растения, такие как листья, стебли и цветы. Вода необходима для жизнедеятельности растения, но только небольшая часть воды, поступающей через корни используется непосредственно для нужд роста и метаболизма.
Атмосферное увлажнение Количество выпадающих осадков без учета ландшафтных условий – величина абстрактная, потому что она не определяет условий увлажнения территории. Так, в тундре Ямала и полупустынях Прикаспийской низменности выпадает одинаковое количество осадков – около 300 мм, но в первом случае увлажнение избыточное, велика заболоченность, во втором – увлажнение недостаточное, растительность здесь сухолюбивая, ксерофитная. Под увлажнением территории понимают соотношение между количеством атмосферных осадков (R), выпадающих в данной местности, и испаряемостью (Ен) за один и тот же период (год, сезон, месяц). Такое отношение, выраженное в процентах, или в долях от единицы, называют коэффициентом увлажнения (Kyв=R/Eн) (по Н. Н. Иванову). Коэффициент увлажнения показывает либо избыточное увлажнение (Кув> 1), если осадки превышают возможное при данной температуре испарение, либо различные степени недостаточного увлажнения (Кув< 1), если осадки меньше испаряемости. Характер увлажнения, т. е. соотношение тепла и влаги в атмосфере, – основная причина существования природно-растительных зон на Земле. По гидротермическим условиям выделяют несколько типов территорий: 1. Территории с избыточным увлажнением – Кув больше 1, т. е. 100-150%. Это зоны тундр и лесотундр, а при достаточном количестве тепла – леса умеренных, тропических и экваториальных широт. Такие переувлажненные территории называют гумидными, а заболоченные – экстрагумидными (лат. humidus – влажный). 2. Территории оптимального (достаточного) увлажнения – это узкие зоны, где Кувоколо 1 (примерно 100%). В их пределах наблюдается соразмерность между суммой осадков и испаряемостью. Это узкие полосы широколиственных лесов, редкостойные переменно-влажные леса и влажные саванны. Условия здесь благоприятны для произрастания мезофильных растений. 3. Территории умеренно-недостаточного (неустойчивого) увлажнения. Выделяют разные степени неустойчивого увлажнения: территориям с Кув = 1-0, 6 (100-60%) свойственны луговые степи (лесостепи) и саванны, с Кув = 0, 6-0, 3 (60-30%) – сухие степи, сухие саванны. Им свойствен сухой сезон, что затрудняет земледельческое освоение из-за частых засух. 4. Территории недостаточного увлажнения. Выделяют аридные зоны (лат. aridus – сухой) с Кув = 0, 3-0, 1 (30-10%), здесь типичны полупустыни, и экстрааридные зоны с Кув менее 0, 1 (менее 10%) – пустыни. На территориях с избыточным увлажнением обилие влаги отрицательно сказывается на процессах аэрации (вентиляции) почвы, т. е. на газообмене почвенного воздуха с атмосферным. Недостаток кислорода в почве образуется вследствие заполнения пор водой, из-за чего воздух туда не поступает. Это нарушает биологические аэробные процессы в почве, нормальное развитие многих растений нарушается или даже прекращается. На таких территориях произрастают растения-гигрофиты и обитают животные-гигрофилы, которые приспособлены к сырым и влажным местообитаниям. Для вовлечения территорий с избыточным увлажнением в хозяйственный, прежде всего сельскохозяйственный, оборот необходимы осушительные мелиорации, т. е. мероприятия, направленные на улучшение водного режима территории, отвод избыточных вод (дренаж). Территорий с недостаточным увлажнением на Земле больше, чем переувлажненных. В аридных зонах земледелие без полива невозможно. Основным мелиоративным мероприятием в них является орошение – искусственное пополнение запасов влаги в почве для нормального развития растений и обводнение – создание источников влаги (прудов, колодцев и других водоемов) для бытовых и хозяйственных нужд и водопоя скота. В естественных условиях в пустынях и полупустынях произрастают растения, приспособленные к сухости, – ксерофиты. Они обычно имеют мощную корневую систему, способную извлекать влагу из грунта, мелкие листья, иногда превращенные в иголочки и колючки, чтобы меньше испарять влаги, стебли и листья нередко покрыты восковым налетом. Особую группу растений среди них образуют суккуленты, которые накапливают влагу в стеблях или листьях (кактусы, агавы, алоэ). Суккуленты произрастают лишь в теплых тропических пустынях, где не бывает отрицательных температур воздуха. Животные пустынь – ксерофилы тоже разным способом приспособлены к сухости, например, впадают в спячку на самый сухой период (суслики), довольствуются влагой, содержащейся в пище (некоторые грызуны). Территориям с недостаточным увлажнением присущи засухи. В пустынях и полупустынях это ежегодные явления. В степях, которые часто называют засушливой зоной, и в лесостепи засухи случаются летом один раз в несколько лет, иногда захватывают конец весны – начало осени. Засуха – это длительный (1-3 месяца) период без дождя или с очень малым количеством осадков, при повышенной температуре и пониженной абсолютной и относительной влажности воздуха и почвы. Различают атмосферную и почвенную засухи. Атмосферная засуха наступает раньше. Из-за высоких температур и большого дефицита влаги резко возрастает транспирация растений, корни не успевают подавать листьям влагу, и они увядают. Почвенная засуха выражается в иссушении почвы, из-за чего нормальная жизнедеятельность растений полностью нарушается и они погибают. Почвенная засуха короче атмосферной за счет весенних запасов влаги в почве и грунтовых вод. Засухи обусловлены антициклональным режимом погоды. В антициклонах воздух опускается, адиабатически нагревается и иссушается. По периферии антициклонов возможны ветры – суховеи с высокой температурой и низкой относительной влажностью (до 10–15%), которые усиливают испарение и еще губительнее действуют на растения. В степях наиболее эффективно орошение при достаточном стоке рек. Дополнительными мерами служат снегонакопление – сохранившаяся стерня на полях и посадка кустарников по бровке балок, чтобы в них не сдувался снег, и снегозадержание – прикатывание снега, создание снежных валов, укрытие снега соломой с целью увеличения продолжительности снеготаяния и пополнения запасов грунтовых вод. Эффективны также лесные полезащитные полосы, которые задерживают сток талых снеговых вод и удлиняют период снеготаяния. Ветрозащитные (ветроломные) лесные полосы большой длины, посаженные в несколько рядов, ослабляют скорость ветров, в том числе суховеев, и тем самым уменьшают испарение влаги. |
8. Почва как экологический фактор. Основные функции почв.
Основоположник современного почвоведения В. В. Докучаев сформулировал понятие о почве как «самостоятельном естественно-историческом теле, которое является продуктом совокупной деятельности грунта, климата, растительных и животных организмов, возраста страны, а отчасти и рельефа местности». Позже к факторам почвообразования добавили деятельность человека. Наибольшее экологическое значение для всех почв имеют климатические факторы. Они обеспечивают условия теплообеспеченности и увлажнения, а также связанные с ними воздушный и соленой режимы. С климатическим зонированием связаны зоны почв и растительности. Многообразие почв в значительной степени обусловливает почвообразующая порода (минеральный субстрат, на котором развиваются почвы). От нее зависит не только минеральный состав почв, но и их химические особенности, а также механические, водно-физические и многие другие свойства. Горшие породы, из которых формируются почвы, очень разнообразны. В процессе выветривания происходят глубокие изменения их шементного и минерального состава: они превращаются в кору выветривания (глинистую, песчаную и др.). В верхней части ее при участии организмов формируется почва.
Экологические функции почв в биосфере базируются на следующих основополагающих ее качествах. Во-первых, почва служит средой обитания и физической опорой для огромного числа организмов; во-вторых, почва является необходимым, незаменимым звеном и регулятором биогеохимических циклов, практически круговороты всех биогенов осуществляются через почву.
Главная функция почвы - это обеспечение жизни на Земле. Это определяется тем, что именно в почве концентрируются необходимые организмам биогенные элементы в доступных им формах химических соединений. Кроме того, почва обладает способностью аккумулировать необходимый для жизнедеятельности продуцентов биогеоценозов запасы воды, также в доступной им форме, равномерно обеспечивая их водой в течение всего периода вегетации. Наконец, почва служит оптимальной средой для укоренения наземных растений, обитания многочисленных беспозвоночных и позвоночных животных, разнообразных микроорганизмов. Собственно эта функция и определяет понятие " плодородие почв".
Вторая функция почв заключается в регулировании всех потоков вещества в биосфере. Все биогеохимические циклы элементов, включая циклы таких важнейших биогенов, как углерод, азот, кислород, фосфор, а также циклы воды осуществляются именно через почвы при ее регулирующем участии в качестве аккумулятора биогенных элементов. Почва - это связующее звено и регулирующий механизм в системах биологической и геологической циркуляции элементов.
Третья функция почвы - регулирование состава атмосферы и гидросферы. Атмосферная функция почвы осуществляется вследствие ее высокой пористости (40-60%) и плотной заселенности организмами, благодаря чему идет постоянный газообмен между почвой и атмосферой. Почва постоянно поставляет в атмосферу различные газы, в том числе и " парниковые" - СО2, СН4, а также множество так называемых " микрогазов". Одновременно почва поглощает кислород из атмосферы. Таким образом, в системе " почва - атмосфера" именно почва является генератором одних газов и " стоком" для других.
В сухопутной ветви глобального круговорота воды почва избирательно отдает в поверхностный и подземный сток растворимые в воде химические вещества, определяя тем самым гидрохимическую обстановку в водах и прибрежной части океана.
Четвертой важнейшей функцией почвы является накопление в поверхностной части коры выветривания, в почвенных горизонтах описанного выше специфического органического вещества - гумуса и связанной с ним химической энергии.
Пятая функция заключается в ее защитной роли по отношению к литосфере. Почва защищает литосферу от воздействия экзогенных факторов, регулируя процессы денудации суши.
Наконец, еще одна, шестая функция почвы - это генерирование и сохранение биологического разнообразия. Почва, являясь средой обитания для огромного числа организмов, ограничивает жизнедеятельность одних и стимулирует активность других. Чрезвычайно большое разнообразие почвенных свойств по кислотности, щелочности, засоленности или отсутствию солей; окислительная или восстановительная обстановка-все это создает огромные возможности жизнедеятельности различных организмов.
По отношению к человеку почва имеет еще одну специфическую функцию, являясь главным средством сельскохозяйственного производства и местом поселения людей.
9. Почвенная гипоксия и аноксия. Приспособления растений к этим явлениям.
Аноксия (от др.-греч. ἀ ν - — отрицательная частица, отсутствие и новолат. oxygenium — кислород) — отсутствие кислорода в организме или в отдельных органах, тканях, крови (аноксемия). Прежде аноксию называли также и гипоксией — недостаток кислорода в организме.
Аноксия — это состояние, при котором ткани человеческого организма получают недостаточное количество кислорода.
Может развиться при снижении атмосферного давления на больших высотах, недостаточности кровообращения, уменьшении содержания эритроцитов или гемоглобина в крови, а также при различных заболеваниях системы кровообращения, например, в случае сердечной недостаточности. Кроме того, может возникать вследствие недостаточного обогащения крови кислородом в легких из-за различных дыхательных нарушений или таких заболеваний, как пневмония, при которых уменьшается эффективная дыхательная поверхность лёгочной ткани.
При истинной общей аноксии вскоре наступает смерть.
Гипокси́ я (др.-греч. ὑ π ό — под, внизу + греч. ο ξ ο γ ό ν ο — кислород; кислородное голодание) — пониженное содержание кислорода в организме или отдельных органах и тканях. Гипоксия возникает при недостатке кислорода во вдыхаемом воздухе, крови (гипоксемия) или тканях (при нарушениях тканевого дыхания).
Если сила или длительность гипоксического воздействия превышают адаптационные возможности организма, органа или ткани — в них развиваются необратимые изменения. Наиболее чувствительны к кислородной недостаточности центральная нервная система, мышца сердца, ткани почек, печени.
Устойчивость к гипоксии может быть повышена. Для этого применяют фармакологические средства[1] и немедикаметозные методы, [2] улучшающие доставку кислорода и/или эффективность его использования (ишемическое прекондиционирование (гипоксическая тренировка), гипербарическая оксигенация, [3] вдыхание воздушных смесей, обогащённых кислородом).
Ключевой медиатор в процессах адаптации клеток к гипоксии — белки HIF (Hypoxia-Inducible Factors, гипоксией индуцированные факторы).
10. Структура почвы и природа субстратов
Труктура почвы
Состав почвы описывает её физическую конфигурацию. Песчинки в песчаных почвах слабо связываются и не образуют агрегатов, в то время как глина в одноименных почвах легко агрегируется. Эти агрегаты делают почву легкообрабатываемой и улучшают движение воздуха и воды.
Состав почвы определяется как трехмерная структура из первичных частиц и подразумевает описание того, как первичные частицы расположены и соединены друг с другом. Описание состава почвы включает в себя определение ее структуры и содержания органического вещества. Различают почвы с зернистой структурой и агрегированные.
Последнее изменение этой страницы: 2017-05-04; Просмотров: 124; Нарушение авторского права страницы