Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Тема: Схема производственного биотехнологического процесса



План лекции:

1.Слагаемые биотехнологического процесса

2. Основные стадии биотехнологического процесса

Продукты биотехнологии получают по индивидуальным технологиям со своими биологическими агентами, сырьем, числом стадий производства и их технологическими режимами. Тем не менее, можно представить себе обобщенную типовую схему биотехнологических производств.

Схема состоит из стадий, в каждой из которых сырье претерпевает определенные технологические воздействия и последовательно превращается во все более сложные полупродукты и, наконец, в конечный продукт. Общий вид такой типовой схемы представлен на рисунке.

 

Типовая схема, основные стадии и технологические процессы в биотехнологических производствах

Основная стадия биотехнологического производства. Основной стадией является собственно биотехнологическая стадия, на которой с использованием того или иного биологического агента (микроорганизмов, изолированных клеток, ферментов или клеточных органелл) происходит преобразование сырья в тот или иной целевой продукт.

Обычно главной задачей биотехнологической стадии является получение определенного органического вещества.

Однако биотехнологическая стадия, как правило, включает в себя не только синтез новых органических соединений, но и ряд других биотехнологических процессов, перечисленных далее.

Ферментация — процесс, осуществляемый с помощью культивирования микроорганизмов.

Биотрансформация — процесс изменения химической структуры вещества под действием ферментативной активности клеток микроорганизмов или готовых ферментов. В этом процессе обычно не происходит накопления клеток микроорганизмов, а химическая структура вещества меняется незначительно. Вещество как бы уже в основном готово, биотрансформация осуществляет его химическую модификацию: добавляет или отнимает радикалы, гидроксильные ионы, дегидрирует и т.п.

Биокатализ — химические превращения вещества, протекающие с использованием биокатализаторов-ферментов.

Биоокисление — потребление загрязняющих веществ с помощью микроорганизмов или ассоциации микроорганизмов в аэробных условиях.

Метановое брожение — переработка органических отходов с помощью ассоциации метаногенных микроорганизмов в анаэробных условиях.

Биокомпостирование — снижение содержания вредных органических веществ ассоциацией микроорганизмов в твердых отходах, которым придана специальная взрыхленная структура для обеспечения доступа воздуха и равномерного увлажнения.

Биосорбция — сорбция вредных примесей из газов или жидкостей микроорганизмами, обычно закрепленными на специальных твердых носителях.

Бактериальное выщелачивание — процесс перевода нерастворимых в воде соединений металлов в растворенное состояние под действием специальных микроорганизмов.

Биодеградация — деструкция вредных соединений под воздействием микроорганизмов – биодеструкторов.

Обычно биотехнологическая стадия имеет в качестве выходных потоков один жидкостной поток и один газовый, иногда только один — жидкостной.

В случае, если процесс протекает в твердой фазе (например, созревание сыра или биокомпостирование отходов) выходом является поток переработанного твердого продукта.


 

Лекция №2

Тема: Требования к продуцентам

План лекции:

1. Понятие микроорганизмы-продуценты

2. Требования предъявляемые к микроорганизмам продуцентам

3. Селекция

4. Генная инженерия

В биотехнологии обычно используются чистые культуры микроорганизмов-продуцентов, так как это позволяет получить продукт с заранее известными свойствами. Применяются штаммы микроорганизмов – микроорганизмы одного вида, выращенные в определенных условиях, вследствие чего обладающие определенными свойствами, которые отличаются от других чистых культур данного вида.

Не все микроорганизмы могут быть использованы в промышленных условиях, а лишь те микроорганизмы-продуценты, обладающие способностью под воздействием внешних факторов (состава среды, условий культивирования, температуры, рН среды и т.д.) образовывать в больших количествах преимущественно то соединение, которое является главным (целевым) продуктом данного производства.

К микроорганизмам-продуцентам предъявляется ряд обязательных требований. Микроорганизмы должны:

- расти на дешевых и доступных питательных средах;

- максимально усваивать питательные вещества среды;

- обладать высокой скоростью роста биомассы и давать высокий выход целевого продукта;

- проявлять синтетическую активность, направленную в сторону получения желаемого продукта; образование побочных продуктов должно быть незначительным;

- быть генетически однородными, стабильными в отношении продуктивности, требований к питательному субстрату и условиям культивирования;

- быть устойчивыми к фагам и другой посторонней микрофлоре;

- быть безвредными для людей (не обладать патогенными свойствами) и для окружающей среды;

- обладать хорошей способностью выделения.

Сверхсинтез, то есть способность микроорганизма синтезировать определенный продукт в количествах, превосходящих физиологические потребности, часто встречается в природе. Микроорганизмы с такими свойствами первыми были использованы в хозяйственной деятельности человека, и таким образом был проведен стихийный отбор наиболее продуктивных форм.

В промышленности применяют три вида штаммов: природные штаммы, нередко улучшенные естественным или искусственным отбором; штаммы, измененные в результате индуцированных мутаций; штаммы культуры, полученные методами генной или клеточной инженерии.

Часто путем отбора не удается получить высокоактивные продуценты, поэтому возникает задача изменения природы организма в нужном направлении. Для этого используют методы селекции.

Селекция – это направленный отбор мутантов, то есть микроорганизмов, наследственные признаки которых претерпели изменения в нужном для человека направлении.

Природные штаммы микроорганизмов не обладают способностью выделять и накапливать в питательной среде такое количество нужного продукта, которое обеспечило бы низкую его стоимость и требуемый объем производства. Поэтому задачей селекции является не только усиление природной способности микроорганизмов продуцировать определенное вещество (ферменты, антибиотики, аминокислоты и т.д.), но во многих случаях и создание продуцента «заново» из штамма дикого типа, способного синтезировать вещество, но не способного его продуцировать. Эти задачи осуществляются получением у природных штаммов наследственных изменений – мутаций, влияющих на фенотип (физиологические и морфологические признаки) клетки. Спонтанные (происходящие случайным образом) мутации помогают микробным популяциям приспосабливаться к новым условиям существования. Мутации приводят к усилению природной способности микроорганизмов синтезировать и продуцировать определенное вещество, а также к появлению новой способности – синтезировать вещество в избытке (сверх своих потребностей) и продуцировать его. Для ускорения селекции используют индуцированный мутагенез, применяя мутагенные факторы физической, химической и биологической природы. К универсальным физическим мутагенам относятся ультрафиолетовое облучение (УФО), рентгеновские лучи и др.; химические факторы мутагенного воздействия - азотистый иприт, нитрозамины, четыреххлористый углерод и другие химикаты; биологическими мутагенами являются фаги (вирусы микроорганизмов).

Таким образом, селекционированные штаммы микроорганизмов обладают определенными ценными наследственно закрепленными свойствами.

Однако мутации образуются случайным образом, поэтому более широко используется генная или генетическая инженерия – генетическая рекомбинация in vitro (в пробирке). Рекомбинация - это обмен генами между двумя хромосомами. Рекомбинантными ДНК называют молекулы ДНК, полученные вне живой клетки, в пробирке, путем соединения природных или синтетических фрагментов ДНК с молекулами, способными реплицироваться (удваиваться) в клетке. Этот подход был разработан на бактериях, в частности на кишечной палочке, в клетки которой вводили гены животных и человека и добивались их репликации. Метод рекомбинации in vitro заключается в выделении ДНК из разных видов, получении гибридных молекул ДНК и введении рекомбинантных молекул в живые клетки с целью проявления нового признака, например, синтеза специфического белка.

Возможности получения новых штаммов микроорганизмов, обладающих способностью к сверхсинтезу целевого продукта, рассмотрим на примере продуцента антибиотика пенициллина. Изначально штамм Penicillium chrysogenum (NRRL-1951) производил 60 мг/л пенициллина. После спонтанной мутации возник новый штамм (NRRL-1951ּ В25) с выходом пенициллина 150 мг/л. После рентгеновского облучения был отобран мутант (Х-1612), дающий 300 мг/л пенициллина. После нескольких циклов мутагенеза и селекции, в которых помимо УФО применяли иприт, удалось вывести высокопродуктивный штамм (Е-15ּ 1), который производил 7 г/л пенициллина. Таким образом, 21 цикл мутагенеза и селекции в течение более двух десятков лет позволил увеличить выход пенициллина в 55 раз. В настоящее время новые штаммы микроорганизмов-продуцентов дают выход более 20 г/л пенициллина.


Лекция №3


Поделиться:



Последнее изменение этой страницы: 2017-05-05; Просмотров: 51; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь