Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Тепловое излучение и его характеристики



Тела, нагретые до достаточно высоких температур, светятся. Свечение тел, обусловлен­ное нагреванием, называется тепловым (температурным) излучением. Тепловое излуче­ние, являясь самым распространенным в природе, совершается за счет энергии тепло­вого движения атомов и молекул вещества (т. е. за счет его внутренней энергии) и свойственно всем телам при температуре выше О К. Тепловое излучение характеризу­ется сплошным спектром, положение максимума которого зависит от температуры. При высоких температурах излучаются короткие (видимые и ультрафиолетовые) элект­ромагнитные волны, при низких — преимущественно длинные (инфракрасные).

Тепловое излучение — практически единственный вид излучения, который может быть равновесным. Предположим, что нагретое (излучающее) тело помещено в по­лость, ограниченную идеально отражающей оболочкой. С течением времени, в резуль­тате непрерывного обмена энергией между телом и излучением, наступит равновесие, т. е. тело в единицу времени будет поглощать столько же энергии, сколько и излучать. Допустим, что равновесие между телом и излучением по какой-либо причине нарушено и тело излучает энергии больше, чем поглощает. Если в единицу времени тело больше излучает, чем поглощает (или наоборот), то температура тела начнет понижаться (или повышаться). В результате будет ослабляться (или возрастать) количество излучаемой телом энергии, пока, наконец, не установится равновесие. Все другие виды излучения неравновесны.

Количественной характеристикой теплового излучения служит спектральная плот­ность энергетической светимости (излучательности) тела — мощность излучения с еди­ницы площади поверхности тела в интервале частот единичной ширины:


где — энергия электромагнитного излучения, испускаемого за единицу време-

ни (мощность излучения) с единицы площади поверхности тела в интервале частот от до

Единица спектральной плотности энергетической светимости джоуль на

метр в квадрате

Записанную формулу можно представить в виде функции длины волны:

Так как , то

где знак минус указывает нато, что с возрастанием одной из величин другая

величина убывает. Поэтому в дальнейшем знак минус будем опускать. Таким образом,

С помощью формулы (197.1) можно перейти от и наоборот.

Зная спектральную плотность энергетической светимости, можно вычислить интег­ральную энергетическую светимость (интегральную нзлучательность) (ее называют про­сто энергетической светимостью тела), просуммировав по всем частотам:

Способность тел поглощать падающее на них излучение характеризуется спект­ральной поглощательной способностью

показывающей, какая доля энергии, приносимой за единицу времени на единицу площади поверхности тела падающими на нее электромагнитными волнами с частота­ми от до , поглощается телом. Спектральная поглощательная способ­ность — величина безразмерная. Величины зависят от природы тела, его термодинамической температуры и при этом различаются для излучений с различными частотами. Поэтому эти величины относят к определенным Т и (вернее, к достаточно узкому интервалу частот от ).

Тело, способное поглощать полностью при любой температуре все падающее на него излучение любой частоты, называется черным. Следовательно, спектральная поглощательная способность черного тела для всех частот и температур тождественно равна единице . Абсолютно черных тел в природе нет, однако такие тела, как

сажа, платиновая чернь, черный бархат и некоторые другие, в определенном интервале частот по своим свойствам близки к ним.


Идеальной моделью черного тела является замкнутая полость с небольшим отвер­стием О, внутренняя поверхность которой зачернена (рис. 286). Луч света, попавший внутрь такой полости, испытывает многократные отражения от стенок, в результате чего интенсивность вышедшего излучения оказывается практически равной нулю. Опыт показывает, что при размере отверстия, меньшего 0, 1 диаметра полости, пада­ющее излучение всех частот полностью поглощается. Вследствие этого открытые окна домов со стороны улицы кажутся черными, хотя внутри комнат достаточно светло из-за отражения света от стен.

Наряду с понятием черного тела используют понятие серого тела — тела, поглоща-тельная способность которого меньше единицы, но одинакова для всех частот и зави­сит только от температуры, материала и состояния поверхности тела. Таким образом, для серого тела

Исследование теплового излучения сыграло важную роль в создании квантовой теории света, поэтому необходимо рассмотреть законы, которым оно подчиняется.

Закон Кирхгофа

Кирхгоф, опираясь на второй закон термодинамики и анализируя условия равновес­ного излучения в изолированной системе тел, установил количественную связь между спектральной плотностью энергетической светимости и спектральной поглощательной способностью тел. Отношение спектральной плотности энергетической светимости к спектральной поглощательной способности не зависит от природы тела; оно является для всех тел универсальной функцией частоты (длины волны) и температуры (закон Кирхгофа):

Для черного тела , поэтому из закона Кирхгофа (см. (198.1)) вытекает, что

для черного тела равна Таким образом, универсальная функция Кирхгофа

есть не что иное, как спектральная плотность энергетической светимости черного тела. Следовательно, согласно закону Кирхгофа, для всех тел отношение спектральной плотности энергетической светимости к спектральной поглощательной способности равно спектральной плотности энергетической светимости черного тела при той же температуре и частоте.

Из закона Кирхгофа следует, что спектральная плотность энергетической светимо­сти любого тела в любой области спектра всегда меньше спектральной плотности энергетической светимости черного тела (при тех же значениях Т и ), так как и поэтому Кроме того, из (198.1) вытекает, что если тело при данной

температуре Тне поглощает электромагнитные волны в интервале частот от то оно их в этом интервале частот при температуре Т и не излучает, так как при

Используя закон Кирхгофа, выражение для энергетической светимости тела (197.2) можно записать в виде

Для серого тела

где


— энергетическая светимость черного тела (зависит только от температуры).

Закон Кирхгофа описывает только тепловое излучение, являясь настолько харак­терным для него, что может служить надежным критерием для определения природы излучения. Излучение, которое закону Кирхгофа не подчиняется, не является тепловым.


Поделиться:



Последнее изменение этой страницы: 2017-05-04; Просмотров: 491; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь