|
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Законы Стефана — Больцмана и смещения Вина
Из закона Кирхгофа (см. (198.1)) следует, что спектральная плотность энергетической светимости черного тела является универсальной функцией, поэтому нахождение ее явной зависимости от частоты и температуры является важной задачей теории теплового излучения. Австрийский физик Й. Стефан (1835—1893), анализируя экспериментальные данные (1879), и Л. Больцман, применяя термодинамический метод (1884), решили эту задачу лишь частично, установив зависимость энергетической светимости
т. е. энергетическая светимость черного тела пропорциональна четвертой степени его термодинамической температуры; Закон Стефана — Больцмана, определяя зависимость
ных температурах (рис. 287) следует, что распределение энергии в спектре черного тела является неравномерным. Все кривые имеют явно выраженный максимум, который по мере повышения температуры смещается в сторону более коротких волн. Площадь, ограниченная кривой зависимости гетической светимости Немецкий физик В. Вин (1864—1928), опираясь на законы термо- и электродинамики, установил зависимость длины волны
т. е. длина волны плотности энергетической светимости
понижении температуры нагретых тел в их спектре все сильнее преобладает длинноволновое излучение (например, переход белого каления в красное при остывании металла, ) Формулы Рэлея — Джинса и Планка Из рассмотрения законов Стефана — Больцмана и Вина следует, что термодинамический подход к решению задачи о нахождении универсальной функции Кирхгофа Формула Рэлея — Джинса для спектральной плотности энергетической светимости черного тела имеет вид где лятора, совершающего колебания, средние значения кинетической и потенциальной энергий одинаковы (см. § 50), поэтому средняя энергия каждой колебательной степени свободы Как показал опыт, выражение (200.1) согласуется с экспериментальными данными только в области достаточно малых частот и больших температур. В области больших частот формула Рэлея — Джинса резко расходится с экспериментом, а также с законом смещения Вина (рис. 288). Кроме того, оказалось, что попытка получить закон Стефана — Больцмана (см. (199.1)) из формулы Рэлея — Джинса приводит к абсурду. Действительно, вычисленная с использованием (200.1) энергетическая светимость черного тела (см. (198.3))
в то время как по закону Стефана — Больцмана В области больших частот хорошее согласие с опытом дает формула Вина (закон излучения Вина), полученная им из общих теоретических соображений:
г де С и А — постоянные величины. В современных обозначениях с использованием по-
стоянной Планка, которая в то время еще не была известна, закон излучения Вина может быть записан в виде
Правильное, согласующееся с опытными данными выражение для спектральной плотности энергетической светимости черного тела было найдено в 1900 г. немецким физиком М. Плавком. Для этого ему пришлось отказаться от установившегося положения классической физики, согласно которому энергия любой системы может изменяться непрерывно, т. е. может принимать любые сколь угодно близкие значения. Согласно выдвинутой Планком квантовой гипотезе, атомные осцилляторы излучают энергию не непрерывно, а определенными порциями — квантами, причем энергия кванта пропорциональна частоте колебания (см. (170.3)):
где ями, то энергия осциллятора
В данном случае среднюю энергию
а спектральная плотность энергетической светимости черного тела
Таким образом, Планк вывел для универсальной функции Кирхгофа формулу
которая блестяще согласуется с экспериментальными данными по распределению энергии в спектрах излучения черного тела во всем интервале частот и температур. Теоретический вывод этой формулы М. Планк изложил 14 декабря 1900 г. на заседании Немецкого физического общества. Этот день стал датой рождения квантовой физики. В области малых частот, т. е. при теплового движения kТ), формула Планка (200.3) совпадает с формулой Рэлея — Джинса (200.1). Для доказательства этого разложим экспоненциальную функцию в ряд, ограничившись для рассматриваемого случая двумя первыми членами:
Подставляя последнее выражение в формулу Планка (200.3), найдем, что
т. е. получили формулу Рэлея — Джинса (200.1). Из формулы Планка можно получить закон Стефана — Больцмана. Согласно (198.3) и (200.3),
Введем безразмерную переменную разуется к виду
где Планка позволяет получить закон Стефана — Больцмана (ср. формулы (199.1) и (200.4)). Кроме того, подстановка числовых значений значение, хорошо согласующееся с экспериментальными данными. Закон смещения Вина получим с помощью формул (197.1) и (200.3):
откуда
Значение водную. Тогда, введя
Решение этого трансцендентного уравнения методом последовательных приближений дает х=4, 965. Следовательно,
т. е. получили закон смещения Вина (см. (199.2)). Из формулы Плавка, зная универсальные постоянные постоянные Стефана — Больцмана Таким образом, формула Планка не только хорошо согласуется с экспериментальными данными, но и содержит в себе частные законы теплового излучения, а также позволяет вычислить постоянные в законах теплового излучения. Следовательно, формула Планка является полным решением основной задачи теплового излучения, поставленной Кирхгофом. Ее решение стало возможным лишь благодаря революционной квантовой гипотезе Планка. |
Последнее изменение этой страницы: 2017-05-04; Просмотров: 527; Нарушение авторского права страницы