Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Оптическая пирометрия. Тепловые источники света



Законы теплового излучения используются для измерения температуры раскаленных и самосветящихся тел (например, звезд). Методы измерения высоких температур, использующие зависимость спектральной плотности энергетической светимости или интегральной энергетической светимости тел от температуры, называются оптической пирометрией. Приборы для измерения температуры нагретых тел по интенсивности их теплового излучения в оптическом диапазоне спектра называются пирометрами. В зави­симости от того, какой закон теплового излучения используется при измерении тем­пературы тел, различают радиационную, цветовую и яркостную температуры.

1. Радиационная температура — это такая температура черного тела, при которой
его энергетическая светимость (см. (198.3)) равна энергетической светимости (см.
(197.2)) исследуемого тела. В данном случае регистрируется энергетическая светимость
исследуемого тела и по закону Стефана — Больпмана (199.1) вычисляется его радиаци­
онная температура:

Радиационная температура тела всегда меньше его истинной температуры Для доказательства этого предположим, что исследуемое тело является серым. Тогда, используя (199.1) и (198.2), можно записать

С другой стороны,

Из сравнения этих выражений вытекает, что

Так как т. е. истинная температура тела всегда выше радиационной.

2. Цветовая температура. Для серых тел (или тел, близких к ним по свойствам)
спектральная плотность энергетической светимости

где Следовательно, распределение энергии в спектре излучения серого

тела такое же, как и в спектре черного тела, имеющего ту же температуру, поэтому к серым телам применим закон смещения Вина (см. (199.2)). Зная длину волны соответствующую максимальной спектральной плотности энергетической светимости исследуемого тела, можно определить его температуру

которая называется цветовой температурой. Для серых тел цветовая температура совпадает с истинной. Для тел, которые сильно отличаются от серых (например, обладающих селективным поглощением), понятие цветовой температуры теряет смысл. Таким способом определяется температура на поверхности Солнца и звезд.

3. Яркостная температура — это температура черного тела, при которой для
определенной длины волны его спектральная плотность энергетической светимости


равна спектральной плотности энергетической светимости исследуемого тела, т. е.

где Т—истинная температура тела. По закону Кирхгофа (см. (198.1)), для исследу­емого тела при длине волны

или, учитывая (201.1),

Так как для нечерных тел А< 1, то и, следовательно, т. е. истинная

температура тела всегда выше яркостной.

В качестве яркостного пирометра обычно используется пирометр с исчезающей нитью. Накал нити пирометра подбирается таким, чтобы выполнялось условие (201.1). В данном случае изображение нити пирометра становится неразличимым на фоне поверхности раскаленного тела, т. е. нить как бы «исчезает». Используя програду-ированный по черному телу миллиамперметр, можно определить яркостную тем­пературу.

Зная поглощательную способность тела при той же длине волны, по яркостной

температуре можно определить истинную. Переписав формулу Планка (200.3) в виде

и учитывая это в (201.2), получим

т. е. при известных можно определить истинную температуру исследуемого

тела.

4. Тепловые источники света. Свечение раскаленных тел используется для создания источников света, первые из которых — лампы накаливания и дуговые лампы — были соответственно изобретены русскими учеными А. Н. Лодыгиным в 1873 г. и П. Н. Яблочковым в 1876 г.

На первый взгляд кажется, что черные тела должны быть наилучшими тепловыми источниками света, так как их спектральная плотность энергетической светимости для любой длины волны больше спектральной плотности энергетической светимости не­черных тел, взятых при одинаковых температурах. Однако оказывается, что для некоторых тел (например, вольфрама), обладающих селективностью теплового излуче­ния, доля энергии, приходящаяся на излучение в видимой области спектра, значительно больше, чем для черного тела, нагретого до той же температуры. Поэтому вольфрам, обладая еще и высокой температурой плавления, является наилучшим материалом для изготовления нитей ламп.

Температура вольфрамовой нити в вакуумных лампах не должна превышать 2450 К, поскольку при более высоких температурах происходит ее сильное распыление. Максимум излучения при этой температуре соответствует длине волны 1, 1 мкм, т. е. очень далек от максимума чувствительности человеческого глаза ( 0, 55 мкм). Напол­нение баллонов ламп инертными газами (например, смесью криптона и ксенона с добавлением азота) при давлении 50 кПа позволяет увеличить температуру нити до 3000 К, что приводит к улучшению спектрального состава излучения. Однако светоотдача при этом не увеличивается, так как возникают дополнительные потери


энергии из-за теплообмена между нитью и газом вследствие теплопроводности и кон­векции. Для уменьшения потерь энергии за счет теплообмена и повышения светоотдачи газонаполненных ламп нить изготовляют в виде спирали, отдельные витки которой обогревают друг друга. При высокой температуре вокруг этой спирали образуется неподвижный слой газа и исключается теплообмен вследствие конвекции. Энергетичес­кий к.п.д. ламп накаливания в настоящее время не превосходит

§ 202. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта

Гипотеза Планка, блестяще решившая задачу теплового излучения черного тела, получила подтверждение и дальнейшее развитие при объяснении фотоэффекта — явле­ния, открытие и исследование которого сыграло важную роль в становлении квантовой теории. Различают фотоэффект внешний, внутренний и вентильный. Внешним фотоэле­ктрическим эффектом (фотоэффектом) называется испускание электронов веществом под действием электромагнитного излучения. Внешний фотоэффект наблюдается в тве­рдых телах (металлах, полупроводниках, диэлектриках), а также в газах на отдельных атомах и молекулах (фотоионизация). Фотоэффект обнаружен (1887 г.) Г. Герцем, наблюдавшим усиление процесса разряда при облучении искрового промежутка уль­трафиолетовым излучением.

Первые фундаментальные исследования фотоэффекта выполнены русским ученым А. Г. Столетовым. Принципиальная схема для исследования фотоэффекта приведена на рис. 289. Два электрода (катод К из исследуемого металла и анод А — в схеме Столетова применялась металлическая сетка) в вакуумной трубке подключены к бата­рее так, что с помощью потенциометра R можно изменять не только значение, но и знак подаваемого на них напряжения. Ток, возникающий при освещении катода монохроматическим светом (через кварцевое окошко), измеряется включенным в цепь миллиамперметром. Облучая катод светом различных длин волн, Столетов установил следующие закономерности, не утратившие своего значения до нашего времени: 1) на­иболее эффективное действие оказывает ультрафиолетовое излучение; 2) под действи­ем света вещество теряет только отрицательные заряды; 3) сила тока, возникающего под действием света, прямо пропорциональна его интенсивности.

Дж. Дж. Томсон в 1898 г. измерил удельный заряд испускаемых под действием света частиц, (по отклонению в электрическом и магнитном полях). Эти измерения показали, что под действием света вырываются электроны.

Внутренний фотоэффек т — это вызванные электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний в свобод­ные без вылета наружу. В результате концентрация носителей тока внутри тела увеличивается, что приводит к возникновению фотопроводимости (повышению электро-


проводности полупроводника или диэлектрика при его освещении) или к возникнове­нию Э.Д.С.

Вентильный фотоэффект, являющийся разновидностью внутреннего фотоэффек­та, — возникновение э.д.с. (фото-э.д.с.) при освещении контакта двух разных полупро­водников или полупроводника и металла (при отсутствии внешнего электрического поля). Вентильный фотоэффект открывает, таким образом, пути для прямого преоб­разования солнечной энергии в электрическую.

На рис. 289 приведена экспериментальнаяустановка для исследования вольт-ампер­ной характеристики фотоэффекта — зависимости фототока образуемого потоком электронов, испускаемых катодомпод действием света, от напряжения между электродами. Такаязависимость, соответствующая двум различным освещенностям катода(частота света в обоих случаяходинакова), приведена на рис. 290. По мере увеличения фототок постепенно возрастает, т. е. все большее число фотоэлектронов достигает анода. Пологий характер кривых показывает, что электроны вылетают из катода с различнымискоростями. Максимальное значение тока фототок насы­щения — определяется таким значением при котором все электроны, испускаемые катодом, достигают анода:

где — число электронов, испускаемых катодом в 1 с.

Из вольт-амперной характеристики следует, что при фототок не исчезает.

Следовательно, электроны, выбитые светом из катода, обладают некоторой начальной скоростью v, а значит, и отличной от нуля кинетической энергией и могут достигнуть анода без внешнего поля. Для того чтобы фототок стал равным нулю, необходимо приложить задерживающее напряжение При ни один из электронов, даже

обладающий при вылете из катода максимальной скоростью не может преодолеть задерживающего поля и достигнуть анода. Следовательно,

т. е., измерив задерживающее напряжение можно определить максимальные значе­ния скорости и кинетической энергии фотоэлектронов.

При изучении вольт-амперных характеристик разнообразных материалов (важна чистота поверхности, поэтому измерения проводятся в вакууме и на свежих поверх­ностях) при различных частотах падающего на катод излучения и различных энер­гетических освещенностях катода и обобщения полученных данных были установлены следующие три закона внешнего фотоэффекта.

I. Закон Столетова: при фиксированной частоте падающего света число фотоэлект­ронов, вырываемых из катода в единицу времени, пропорционально интенсивности света (сила фототока насыщения пропорциональна энергетической освещенности ка­тода).


II. Максимальная начальная скорость (максимальная начальная кинетическая энер­гия) фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой

Ш. Для каждого вещества существует красная граница фотоэффекта, т. е. мини­мальная частота света (зависящая от химической природы вещества и состояния его поверхности), ниже которой фотоэффект невозможен.

Качественное объяснение фотоэффекта с волновой точки зрения на первый взгляд не должно было бы представлять трудностей. Действительно, под действием поля световой волны в металле возникают вынужденные колебания электронов, амплитуда которых (например, при резонансе) может быть достаточной для того, чтобы электро­ны покинули металл; тогда и наблюдается фотоэффект. Кинетическая энергия вырыва­емого из металла электрона должна была бы зависеть от интенсивности падающего света, так как с увеличением последней электрону передавалась бы большая энергия. Однако этот вывод противоречит П закону фотоэффекта. Так как, по волновой теории, энергия, передаваемая электронам, пропорциональна интенсивности света, то свет любой частоты, но достаточно большой интенсивности должен был бы вырывать электроны из металла; иными словами, красной границы фотоэффекта не должно быть, что противоречит III закону фотоэффекта. Кроме того, волновая теория не смогла объяснить безынерционность фотоэффекта, установленную опытами. Таким образом, фотоэффект необъясним с точки зрения волновой теории света.


Поделиться:



Последнее изменение этой страницы: 2017-05-04; Просмотров: 1188; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.024 с.)
Главная | Случайная страница | Обратная связь