|
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Сведение многокритериальной задачи к однокритериальной
Рассмотрим наиболее употребительные способы решения многокритериальных задач. q0(x) = q0(q1(x), q2(x), ..., qp(x)). (2) Суперкритерий позволяет упорядочить альтернативы по величине q0, выделив тем самым наилучшую (в смысле этого критерия). Вид функции q0 определяется тем, как мы представляем себе вклад каждого критерия в суперкритерий; обычно используют аддитивные или мультипликативные функции:
Коэффициенты si обеспечивают, во-первых, безразмерность числа qi/si (частные критерии могут иметь разную размерность, и тогда некоторые арифметические операции над ними, например сложение, не имеют смысла) и, во-вторых, в необходимых случаях (как в формуле (4)) выполнение условия β iqi/si £ 1. Коэффициенты α i и β i отражают относительный вклад частных критериев в суперкритерий. Итак, при данном способе задача сводится к максимизации суперкритерия:
Очевидные достоинства объединения нескольких критериев в один суперкритерий сопровождаются рядом трудностей и недостатков, которые необходимо учитывать при использовании этого метода. Оставив в стороне трудности построения самой функции и вычислительные трудности ее максимизации, обратим внимание на следующий очень важный момент. Упорядочение точек в многомерном пространстве в принципе не может быть однозначным и полностью определяется видом упорядочивающей функции.
Другой вариант поиска альтернативы, самой удаленной от нуля в заданном направлении, дает максимизация минимального критерия [23]:
что означает поиск вокруг направления α iqi/si = const методом “подтягивания самого отстающего”.
Условная максимизация Недостатки свертывания нескольких критериев заставляют искать другие подходы к решению задач многокритериального выбора. Рассмотрим теперь второй способ решения таких задач. Он заключается в ином, нежели при свертывании, использовании того факта, что частные критерии обычно неравнозначны между собой (одни из них более важны, чем другие). Наиболее явное выражение этой идеи состоит в выделении основного, главного критерия и рассмотрении остальных как дополнительных, сопутствующих. Такое различие критериев позволяет сформулировать задачу выбора как задачу нахождения условного экстремума основного критерия:
при условии, что дополнительные критерии остаются на заданных им уровнях. На рис. 1, б приведено решение задачи
В некоторых задачах оказывается возможным или даже необходимым задавать ограничения на сопутствующие критерии не столь жестко, как в задаче (7). Например, если сопутствующий критерий характеризует стоимость затрат, то вместо фиксации затрат разумнее задавать их верхний уровень, т.е. формулировать задачу с ограничениями типа неравенств:
На рис. 1, б приведено решение задачи
Варианты оптимизации при разноважных критериях Условная оптимизация, изложенная в предыдущем разделе, является не единственно возможным подходом к рассмотрению задач с разноважными критериями. Возможны и другие варианты, отличие между которыми проистекает из того, что степень разноважности критериев может быть слабо выраженной, а может быть и весьма сильной.
Пусть частные критерии могут быть пронумерованы в порядке убывания их важности. Возьмем первый из них и найдем наилучшую по этому критерию альтернативу (на рис. 1, б это x2*, если самым важным критерием является q2, и x4*, если им является q1). Затем определим “уступку” Δ qi, т.е. величину, на которую мы согласны уменьшить достигнутое значение самого важного критерия, чтобы в пределах этой уступки попытаться увеличить, насколько возможно, значение следующего по важности критерия (на рис. 1, б полученные таким образом альтернативы изображены точками x3* и x5*). Далее (если число критериев более двух) определяется уступка по только что максимизированному критерию и максимизируется следующий; процедура повторяется до тех пор, пока перечень критериев не закончится. Как видим, в методе уступок предполагается, что разница в важности критериев не слишком велика; можно предположить, что величина уступок как-то связана с нашим ощущением этой разницы. Противоположным крайним случаем является ситуация, в которой разница между упорядоченными критериями настолько велика, что следующий в этом ряду критерий рассматривается только в том случае, если сравниваемые альтернативы неразличимы по старшим критериям. Ни о каких уступках при этом не может быть и речи. В этой ситуации выбор довольно часто заканчивается на первом же шаге, а до последнего критерия дело обычно не доходит (точнее, он “изобретается” в том чрезвычайно редком экзотическом случае, когда принятые ранее критерии не выделили единственной альтернативы). Такой выбор получил название лексикографического упорядочивания альтернатив, поскольку этот метод используется при упорядочении слов в различных словарях (предпочтительность определяется алфавитным рангом очередной буквы в данном слове). Выбор между упорядочениями Для рассматриваемых методов многокритериальной оптимизации существенным является исходное упорядочение критериев. Иногда их порядок очевиден или общепризнан (как порядок букв в алфавите), но бывает, что этот вопрос не тривиален, а привлекаемые для его решения эксперты дают несовпадающие упорядочения критериев. Выход состоит в том, чтобы установить, какое из предложенных экспертами упорядочений является “средним”, “типичным” для данной группы. Это опять-таки можно делать по-разному. Среди специалистов пользуется признанием упорядочение, называемое медианой Кемени. Обозначим через Ri упорядочение критериев, предложенное i-м экспертом. Введем некоторую меру расхождения между двумя (i-й и j-й) ранжировками: d(Ri, Rj). Медианой Кемени R* среди n предложенных упорядочений R1, R2, ..., Rn называется то из них, которое отвечает условию
т.е. то, сумма “расстояний” до которого от всех остальных минимальна. Ясно, что многое зависит от того, как определить расстояние d. Например, если Ri = q1(i), ..., qp(i), то dp(Ri, Rj) можно определить как d(hi, Rj1) = = p – Однако следует отметить, что с медианой Кемени связано несколько трудностей. Во-первых, оптимизационная задача по нахождению R* решается методами дискретной оптимизации (динамического программирования, ветвей и границ, и др.), трудоемкость которых экспоненциально растет с увеличением размерности задачи. Во-вторых, иногда решение задачи не единственно, и в этом случае возникают трудности: в литературе приводится пример, когда в одной из оптимальных ранжировок конкретная альтернатива стоит на первом месте, а в другой – на последнем). Поэтому используют и другие способы упорядочения, наиболее известным из которых является метод строчных сумм. Пусть критерии сравниваются попарно: aij= 1, если k-й эксперт считает, что qi важнее qj; 0, если наоборот; 1/2, если он считает их равноценными. Для каждого критерия вычисляют величины |
Последнее изменение этой страницы: 2017-05-06; Просмотров: 1829; Нарушение авторского права страницы