Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Применение плазмы в химической промышленности



Плазма – частично или полностью ионизированный газ, содержащий заряженные частицы (свободные электроны или ионы).

Плазму делят на низкотемпературную (Т ~103–105К) и высокотемпературную (Т ~106–108 К). В настоящее время технологически освоена низкотемпературная плазма.

Плазменные реакторы, в которых осуществляются технологические процессы, состоят из:

  1. плазматрона
  2. реактора
  3. закалочного устройства

Плазменные реакторы бывают двух типов: с прямоточными и встречными струями.

Высокие скорости процесса (продолжительность ~10-2–10-5 с) позволяют резко уменьшить размеры аппаратуры. Так реактор для пиролиза метана имеет производительность 25000 т/год; d = 15 см и l = 65 см.

Плазмохимические процессы очень легко управляются, а быстрая закалка не позво­ляет идти обратным реакциям. В наше время так получают этилен, ацетилен, H2 из угле­водородов, синтез-газ для получения винилхлорида, TiO2 и т.д. Самая актуальная задача – связывание атмосферного азота тоже может быть решено с помощью плазмы по реакции:

N2 + O2 = 2NO

T = 3000°C, концентрация NO ~4%, время установления равновесия 10-6 с.

 

МГД-генераторы

Магнитогидродинамический генератор – энергетическая установка для непосредст­венного преобразования тепловой энергии в электрическую.

МГД-генератор состоит из камеры сгорания и магнитной системы. Принцип дейст­вия заключается в том, что при движении рабочего тела (плазма, электролит, расплавы металлов) поперёк магнитного поля в рабочем теле индуцируется электрический ток, ко­торый отводится во внешнюю цепь. В качестве рабочего тела используют продукт сгора­ния топлива, инертные газы с примесями и т.д.

В электростанциях, кроме того, для получения электричества используют энергию пара в обычных турбинах.

 

Утилизация тепла

Из всех видов потребляемой в химической промышленности энергии первое место принадлежит тепловой энергии. Степень использования тепла при проведении химико-технологического процесса определяется тепловым К.П.Д.:

где Qт и Qпр соответственно количество тепла, теоретически и практически затрачивае­мого на осуществление реакции.

Использование вторичных энергетических ресурсов (отходов) повышает К.П.Д. Энергетические отходы используются в химических и других отраслях промышленности для различных нужд.

Особенно большое значение в химической промышленности имеет утилизация тепла продуктов реакций, выходящих из реакторов, для предварительного нагрева материалов, поступающих в эти же реакторы. Такой нагрев осуществляется в аппаратах, называемых регенераторами, рекуператорами и котлами-утилизаторами. Они накапливают тепло отхо­дящих газов или продуктов и отдают его для проведения процессов.

Регенераторы представляют собой периодически действующие камеры, заполненные насадкой. Для непрерывного процесса необходимо иметь, по крайней мере, 2 регенера­тора.

Горячий газ сначала проходит через регенератор А, нагревает его насадку, а сам охлажда­ется. Холодный газ проходит через регенератор Б и нагревается от ранее нагретой на­садки. После нагрева насадки в А и охлаждения в Б заслонки перекрывают и т.д.

В рекуператорах реагенты поступают в теплообменник, где нагреваются за счёт те­пла горячих продуктов, выходящих из реакционного аппарата, и затем подаются в реак­тор. Теплообмен происходит через стенки трубок теплообменника.

В котлах-утилизаторах тепло отходящих газов и продуктов реакции используют для получения пара.

Горячие газы движутся по трубам, размещённым в корпусе котла. В межтрубном про­странстве находится вода. Образующийся пар, проходя влагоотделитель, выходит из котла.

 

 

Сырьё

 

Химическая промышленность характеризуется высокой материалоёмкостью произ­водства. На одну тонну готовой химической продукции расходуется, как правило, не­сколько тонн сырья и материалов. Отсюда следует, что себестоимость химической про­дукции в значительной мере определяется качеством сырья, способами и стоимостью его получения и подготовки. В химической промышленности затраты на сырьё в себестоимо­сти продукции составляют 60-70% и более.

От вида и качества сырья существенно зависит полнота использования производст­венных мощностей отраслей химической промышленности, производительность тепла, продолжительность работы оборудования, затраты труда и т.д. Свойства сырья, содержа­ние в нём полезных и вредных компонентов определяют применяемую технологию его обработки.

Виды сырья весьма разнообразны, и их можно разделить на следующие группы:

  1. минеральное сырьё;
  2. растительное и животное сырьё;
  3. воздух, вода.

1. Минеральное сырьё – полезные ископаемые, добываемые из земных недр.

Полезные ископаемые в свою очередь подразделяются на:

  • рудные (получение металлов) важные полиметаллические руды
  • нерудные (удобрения, соли, H+, OH-стекло и т.д.)
  • горючие (угли, нефть, газ, сланцы)

Рудное сырьё – это горные породы, из которых экологически выгодно получать ме­таллы. Металлы в нём находятся большей частью в виде оксидов и сульфидов. Руды цвет­ных металлов довольно часто содержат в своём составе соединения нескольких металлов – это сульфиды Pb, Cu, Zn, Ag, Ni и др. Такие руды называют полиметаллическими или комплексными. Непременной составной частью всех промышленных руд является FeS2 – пирит. При переработке некоторых руд получают наряду с металлами и другие продукты. Так, например, одновременно с Cu, Zn, Ni при переработке сульфидных руд получают и H2SO4.

Нерудное сырьё – это горные породы, используемые в производстве неметаллических ма­териалов (кроме хлоридов щелочных металлов и Mg). Этот вид сырья или непосредст­венно используется в народном хозяйстве (без химической переработки) или служит для того или иного химического производства. Это сырьё используют в производстве удобре­ний, солей, кислот, щелочей, цемента, стекла, керамики и т.д.

Нерудное сырьё условно делят на следующие группы:

  • строительные материалы – сырьё используется непосредственно или после механиче­ской или физико-химической отработки (гравий, песок, глина и т.д.)
  • индустриальное сырьё – используется в производстве без обработки (графит, слюда, корунд)
  • химическое минеральное сырьё – используют непосредственно после химической об­работки (сера, селитра, фосфорит, апатит, сильвинит, каменная и другие соли)
  • драгоценное, полудрагоценное и поделочное сырьё (алмаз, изумруд, рубин, мала­хит, яшма, мрамор и т.д.)

Горючее минеральное сырьё – ископаемые, которые могут служить в качестве топ­лива (угли, нефть, газ, горючие сланцы и др.)

2. Растительное и животное сырьё – это продукты сельского (земледелия, животноводства, овощеводства), а также мясного и рыбного хозяйства.

По своему назначению оно подразделяется на пищевое и техническое. К пищевому сырью относятся картофель, сахарная свекла, хлебные злаки и т.д. Химическая и другие отрасли промышленности потребляют растительное и животное сырьё, непригодное для пищи (хлопок, солома, лён, китовый жир, когти и т.д.). Деление сырья на пищевое и техниче­ское в некоторых случаях условно (картофель → спирт).

3. Воздух и вода являются самым дешёвым и доступным сырьём. Воздух – практически неисчерпаемый источник N2 и O2. H2O не только непосредственный источник H2 и O2, но и участвует практически во всех химических процессах, а также используется как раство­ритель.

Экономический потенциал любой страны в современных условиях в большей сте­пени определяется природными ресурсами полезных ископаемых, масштабами и качест­венной характеристикой их местоположений, а также уровнем развития сырьевых отрас­лей промышленности.

Сырьевые ресурсы современной промышленности очень разнообразны, причем с развитием новой техники, внедрением более эффективных методов производства сырье­вая база постоянно расширяется за счёт открытия новых месторождений, освоения новых видов сырья и более полного использования всех его компонентов.

Отечественная промышленность имеет мощную сырьевую базу и располагает запа­сами всех необходимых ей видов минерального и органического сырья. В настоящее время США занимает первое место в мире по добыче запасов P, каменных солей, NaCl, Na2SO4, асбеста, торфа, древесины и т.д. У нас одна из первых мест по разведанным зале­жам нефти и газа. И разведанные запасы сырья из года в год увеличиваются.

На современном этапе развития промышленности большое значение приобретает ра­циональное использование сырья, которое предполагает следующие мероприятия. Рацио­нальное использование сырья позволяет повысить экологическую эффективность произ­водства, т.к. стоимость сырья составляет основную долю в себестоимости химической продукции. В связи с этим стремятся использовать более дешёвое, особенно местное сы­рьё. Например, в настоящее время в качестве углеводородного сырья всё шире исполь­зуют нефть и газ, а не каменный уголь, этиловый спирт, полученный из пищевого сырья заменяют на гидролизный из древесины.

 

 

Обогащение сырья

Всякое ископаемое сырьё после его добычи из земной коры, кроме полезной мине­ральной части, всегда содержит некоторое количество малоценных или бесценных, а ино­гда и вредных для данного производства примесей – пустой породы. Поэтому процесс по­лучения минерального сырья не ограничивается только выемкой его из месторождений. До поступления в производство сырьё подвергают такой обработке, чтобы его состав и свойства удовлетворяли требованиям данного технологического процесса. Такое измене­ние состава минерального сырья, заключающееся в увеличении концентрации в нём по­лезной части называют обогащением.

Обогащение полезных ископаемых, как правило, сложный и дорогостоящий процесс. Од­нако, не смотря на дополнительные затраты, связанные с обогащением, оно обеспечивает значительный эффект, определяемый:

1) возможностью расширения сырьевой базы за счёт комплексного использования сы­рья и вовлечения в эксплуатацию бедных по содержанию основного компонента минералов и руд.

2) более полное использование оборудования на химических предприятиях за счёт пере­работки высококонцентрированного сырья.

3) существенным улучшением качества готовой химической продукции.

4) значительной экономией транспортных средств, вследствие уменьшения перево­зок, приходящихся на долю пустой породы.

Обогащению могут подвергаться твёрдые материалы (например, горные породы) жидко­сти и растворы, а также газовые смеси.

В случае обогащения твёрдых материалов полученный продукт называют концен­тратом, а отходы – хвостами. В тех случаях, когда в сырье содержится несколько полез­ных составляющих, его делят на отдельные части (фракции), обогащенные тем или иным компонентом, т.е. из сложного сырья получают несколько концентратов, что позволяет более полно (комплексно) использовать сырьё.

Методы обогащения твёрдых материалов весьма разнообразны, они основаны на различии физических и химических свойств веществ, входящих в состав сырья, например, прочности, плотности, твёрдости, растворимости, магнитной проницаемости и т.д.

  1. Главная задача – комплексное использование сырья.

Извлекая из сырья основной продукт, сырьё обогащается по другим компонентам, кото­рые подчас являются более дорогими, чем основной продукт.

Например: производство цинка

 

ZnS → SO2 → H2SO4

↓ t°

ZnO (CuO, PbO, CdO, Au, Ag, РЗЭ, Pt)

↓ ↓ ↓

Zn Cu-Pb+Pt Cu-Cd+Pt

↓ ↓ ↓ ↓

Cu+Pt Pb+Pt Cd Cu+Pt → Cu

Au, Ag, Pt

  1. Уменьшение отходов производства

Отходы производства используются либо на самом производстве, либо используют на другие производства. Например, цементная промышленность использует шлаки (ме­таллы), сельскохозяйственная промышленность использует шлаки с фосфором. Ti, V и др. извлекают из металлургических шлаков. Из отходов производства сейчас выпускают ТНП.

  1. Использование «вторичного сырья»

Особенно это относится к металлургической и целлюлозно-бумажной промышленности. Используется металлолом, макулатура и т.д.

  1. Использование местного сырья

Это особенно приобретает значение при длинных перевозках, т.к. сокращение перевозок снижает себестоимость продукции.

  1. Замена пищевого сырья непищевым

Этиловый спирт не из картофеля, а гидролизный или из этилена. При синтезе синтетиче­ского каучука спирт как сырьевой продукт заменяют на бутан (из природного газа).

Основные методы обогащения твёрдых веществ:

1. Рассеивание (грохочение) основано на том, что минералы, входящие в состав сы­рья, имеют различную прочность, поэтому при дроблении менее прочные (хрупкие) мине­ралы дробятся на более мелкие зёрна, чем прочные (вязкие) материалы. Если после из­мельчения просеять такое сырьё через сито с отверстиями различного размера, то можно получить фракции, обогащённые тем или иным минералом.

2. Гравитационное разделение основано на различии скоростей осаждения частиц в жидкости или газе в зависимости от плотности или хрупкости этих частиц. Если осажде­ние производят в жидкости (чаще всего в воде), его называют мокрым гравитационным обогащением, если осаждение ведут в газе (чаще в воздухе), его называют сухим гравита­ционным обогащением.

3. Магнитная сепарация применяется для обогащения магнитновосприимчивых мате­риалов от немагнитных, а также для удаления стальных предметов, случайно попавших в руду; так отделяют магнитный железняк от пустой породы.

4. Флотационное обогащение основано на различной смачиваемости зёрен отдельных минералов водой. Частицы несмачиваемого (гидрофобного) материала не преодолевают силы поверхностного натяжения воды и остаются на её поверхности. Частицы смачивае­мого (гидрофильного) материала обволакиваются плёнкой жидкости и опускаются на дно аппарата. Несмачиваемый материал снимают с поверхности жидкости, отделяя от руды.

Жидкие растворы различных веществ концентрируют упариванием растворителя, вымораживанием, выделением примесей в осадок или в газовую фазу.

Газовые смеси разделяют на компоненты последовательной конденсацией, т.е. пе­реводят их в жидкое состояние при постепенном понижении температуры и сжатии. Этот метод основан на различии температур конденсации компонентов газовой смеси. В других случаях газовую смесь сначала превращают в жидкость, а затем последовательным испа­рением её разделяют на индивидуальные компоненты. Разделение газовых смесей осуще­ствляется также поглощением отдельных газов жидкостями (абсорбция) или твёрдыми веществами (адсорбция) с последующим выделением их из сорбентов в поглощенном виде.

 

А теперь перейдём к более подробному ознакомлению с теоретическими основами и технологиями процессов обогащения.

Как уже выяснили, первой стадией любого процесса обогащения твёрдых тел явля­ется стадия измельчения. В зависимости от размеров кусков исходного и измельчённого материала различают следующие классы измельчения:

 

Класс измельчения Размер кусков исходного материала, dн, мм Размер кусков измельчён­ного материала, dк, мм
Дробление a) крупное b) среднее c) мелкое Помол a) грубый b) средний c) тонкий d) коллоидный     1-5 0, 1-0, 05 0, 1-0, 04 < 0, 1   1-5   0, 1-0, 5 0, 015-0, 005 0, 005-0, 001 < 0, 001

 

По твёрдости измельчения материалы делят на твёрдые (твёрдость по Моосу 5-10) – это руды, породы, шлак; средней твёрдости (твёрдость 2-5) – известняк, каменная соль, уголь; мягкие (твёрдость < 1) – глина, пластмассы, зерно.

Отношение диаметров кусков исходного и измельчённого материала dн/dк =i назы­вают линейной степенью измельчения, а отношение dн3/dк3 =i0 – объёмной степенью из­мельчения. Под dн и dк подразумевают размеры наибольших кусков. При измельчении крупных и средних кусков обычно i = 3-8, а для мелких i = 10-50 и более. При этом, чем прочнее измельчённый материал, тем меньше величина i.

Одним из важнейших технико-экономических показателей процессов измельчения твёрдых материалов является расход энергии для совершения работы измельчения. Если предположить, что измельчение тело является однородным, абсолютно упругим и делится по строго определённому геометрическому закону, то расход энергии должен быть про­порционален величине вновь образованной поверхности в измельчённом материале (по­верхностная гипотеза Риттингера 1867 г.)

Так, например, тело кубической формы с длиной ребра dн имеет поверхность Fн=6dн3. Разрежем этот куб на z маленьких кубиков с длиной ребра dк. Число этих кубиков будет равно dн3/dк3, а их суммарная поверхность Fx=6 (d /d )=6dк2i0. Вновь образованная поверхность выражается формулой F=Fx–Fн=6d (i–1).

Принимая, что на образование единицы поверхности затрачивается работа Ау, получим выражение для работы на измельчение рассматриваемого тела

А=6Ауd (i–1)

Величина Ау теоретическому определению не поддается и находится опытным путем в каждом конкретном случае применительно к данному материалу, данной машине и данной степени измельчения. Она одновременно и отражает отклонение от всех ранее сделанных предположений. Величина А всегда больше теоретической т.к. энергия дополнительно тратится на деформацию тела. Теория также не учитывает различную форму кусков материала и применима лишь в случаях измельчения резаньем и истиранием и для мелкого дробления.

При измельчении материала методами раздавливания, удара и для хрупкого и среднего дробления практически оправдывается гипотеза Кирпичева-Кика (1874), базирующаяся на теории упругости, согласно которой расход энергии пропорционален разрушающему напряжению, и энергия расходуется на деформацию материала до его разрушения.

Вывод: под действием силы Р кусок материала деформируется до разрушения

σ р – разность напряжения

l – начальный размер

Δ l – деформация

Работа A = PΔ l если P= относительное сжатие (по закону Гука)

E – модуль упругости

тогда

A=

Разнообразие физико-химических свойств твердых материалов привело к созданию ряда измельчающих машин, отличающихся принципом действия.

Принципы измельчения твердых материалов следующие:

– раздавливание,

– раскалывание,

– истирание,

– удар.

Обобщенная теория:

A = 6A’dн2(i–1) + σ

мелкое крупное

В зависимости от свойств материала применяют тот или иной метод, или сразу несколько методов.

Например:

Материал Метод
Твердый, хрупкий Твердый, вязкий Хрупкий, средней твердости Вязкий, средней твердости Раздавливание, удар Раздавливание Удар, истирание Истирание

 

Для крупного и среднего дробления применяются:

  1. Щековые дробилки (раздавливание)
  2. Конусные дробилки (раздавливание + истирание)

Для мелкого измельчения и тонкого помола применяются:

  1. Молотковые мельницы (удар + истирание)
  2. Шаровые (барабанные) мельницы (удар + истирание)

 

Щековые дробилки

Рабочими элементами щековых дробилок являются неподвижная и подвижная щеки, образующие свободную полость (открытая система) сечение которой уменьшается сверху вниз.

1 – неподвижная щека

2 – подвижная щека

3 – эксцентрик с шатуном

Материал, загружаемый сверху, при сближении подвижной щеки измельчается, а при её удалении уходит в приемный бункер.

 

 

Важным параметром щековой дробилки является угол α между ее щеками, обеспечивающий захват материала. α – угол захвата, его можно определить из баланса сил, действующих на кусок материала, зажатого между щеками.

Равнодействующая сил давления Р → R стремится выбросить материал из пасти дробилки.

R=2Psin( )

С другой стороны проекции сил трения fР стремится удержать материал.

R’=2fPcos( )

Следовательно, материал останется в пасти если

R’ R 2fPcos( ) 2Psin( ) f ≥ tg( ); f ≈ 0.3

α ~ 30-40°

 

Конусные дробилки

Основными рабочими элементами конусных дробилок являются два усеченных конуса, размещенных один в другом, из которых внешний неподвижен, а внутренний вращается.

1 – неподвижный конус

2 – подвижный конус

3 – эксцентрик

 

 

Хрупкость материала регулируют подъёмом подвижного конуса.

В отличие от щековой дробилки, здесь измельчение материала происходит непрерывно. Но в обоих случаях силы действуют одни и те же и f ≥ tg( )

 

Молотковые мельницы

Основными рабочими элементами молотковых мельниц являются молотки (4 или 6), которые свободно подвешиваются на вращающихся дисках.

1 – молотки

2 – диски

3 – стяжки

4 – вал

5 – под (решётка)

Материал поступает через верхнюю воронку, попадает под удар быстро вращающихся молотков, измельчаясь как при столкновении с ним, так и при ударе о подовую решётку и добавочно измельчаются при движении молотков по решётке. Размер частиц измельчённого материала определяется отверстиями в решётке.

 

Шаровые мельницы

Основными рабочими элементами шаровых (барабанных) мельниц являются шары или стержни, находящиеся во вращающемся барабане.

Различают шаровые мельницы периодического действия (для мелких партий материала) и непрерывного (для крупных производств).

Измельчение материала происходит при падении шаров из верхней части барабана (удар) и при движении шаров в нижней части (истирание)

Сила удара определяется углом подъёма шаров, которая зависит от скорости вращения барабана.

С увеличением скорости вращения барабана увеличивается центробежная сила и увеличивается угол подъёма шаров. Если увеличить ещё скорость, то шары описывают полную окружность и измельчение не происходит. Допустим, что шар находится в точке отрыва А и на него действуют силы

1. Сила трения P

2. Центробежная C’

C’ =

g – ускорение свободного падения

R – радиус барабана

3. Радиальная составляющая силы тяжести

Pc = Psin α

Поскольку , n – число оборотов, то условие истирания запишется

C’ < Pc < Psinα (выразим n)

n < ; примем π 2 ≈ g

n < 30

в критической точке А (когда истирания нет) sinα = sin 90° =1

nкр=

nкр зависит только от радиуса, а не от шаров.

Используют n = 0, 75nкр и Rшара =0, 1Rбарабана.

 

 

Методы обогащения

Грохочение (Рассеивание).

Кроме обогащения используется для сортировки материалов по крупности. Грохочение может разделить материал по крупности от 5 до 250 мм, и его производят на грохотах. Различают качающиеся, вибрационные и барабанные грохоты.

Схема горизонтального качающегося грохота

Рассеиваемый материал подаётся сверху, проходит по верхней части грохота и рассеивается через сита. В бункерах собирается материал определённого размера, обогащенный по тому или иному компоненту.

Барабанный грохот устроен аналогично, только движение материала происходит не по горизонтальной площадке, а внутри вращающегося барабана, в стенках которого расположены сита.

В вибрационных грохотах плоское и обычно наклонённое сито совершает при помощи специального механизма (вибратора) частые колебания небольшого размера. Число вибрации сита находится в пределах 900-1500 в минуту (иногда до 3600) при амплитуде колебаний от 0, 5 до 12 мм. Жёсткая связь между элементами вибрационных грохотов полностью или частично отсутствует, вследствие чего колебания сита в различных точках его поверхности неодинаковы и зависят от угловой скорости вала, упругости опорных пружин, движущейся массы грохота вместе с материалом и других динамических факторов.

Короб 1 и сита 2 установлены на пружинах 3. На стойках и подшипниках вращается вал 4 (без экс­центриков) с двумя шкивами 5, несущими неурав­новешенные грузы 6 (дебаланс) При вращении шкивов возникают центробежные силы инерции, под действием которых коробу сообщаются вибра­ции. Траектории точек короба и амплитуда его ко­лебаний определяются динамическими факторами, перечисленными выше. Для вибрационных грохо­тов требуется весьма равномерное питание мате­риалом.

В настоящее время вибрационные грохоты вытесняют грохоты всех других типов. Это объяс­няется следующими крупными достоинствами виб­рационных грохотов: 1. При высокой частоте коле­баний сита его отверстия почти не забиваются ма­териалом, то есть устраняется недостаток, свойственный грохотам других типов. 2. Более высокая производительность и точность грохочения. 3. Пригодность для крупного и тон­кого грохочения разнообразных материалов (в том числе влажных и глинистых) с разме­рами кусков и зёрен от 250 до 0, 1 мм. 4. Компактность, лёгкость регулирования и смены сит. 5. Меньший расход энергии, чем для грохотов других типов.


Поделиться:



Последнее изменение этой страницы: 2017-05-11; Просмотров: 437; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.087 с.)
Главная | Случайная страница | Обратная связь