Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Вступ. Методи побудови РС
В основному склалося три основні способи побудови РС на заданому шаблоні : 1.Метод різницевої апроксимації (той, що ми розлядали до сих пір) ; 2.Метод невизначених коефіцієнтів; 3.Інтегро-інтерпаляційний метод (метод балансу);
1. Метод різницевої апроксимації полягає в тому, що кожна похідна, що входить в диференціальне рівняння і крайові умови змінюється певним різницевим виразом (включаючи лише вузли шаблону). Саме так були отримані всі розглянуті нами вище різницеві схеми. Цей метод досить простий і додаткових пояснень не потребує. Метод різницевої апроксимації дозволяє легко складати РС першого чи другого порядку апроксимації на прямокутній сітці для рівнянь з неперервними і достатньо гладкими коефіцієнтами. Однак цей метод важко чи неможливо застосувати в більш складних випадках , а саме для рівнянь з розривними коефіцієнтами, на прямокутних сітках , для рівнянь високого порядку , на нерівномірних сітках і т. д. Приклад: маємо стержень, що складається з неоднорідного матеріалу(половина сталь, половина мідь).
c1,ρ1,λ1 c2, 2 ρ,λ2 ℓ* ℓ
2. Метод невизначених коефіцієнтів полягає в тому , що в якості РС беруть лінійну комбінацію значень різницевого розв’язку у вузлах шаблону. Коефіцієнти цієї лінійної комбінації вимагають умови, щоб нев’язка схема мала як можна більш високий порядок малості відносно t і h. Завдання: методом невизначених коефіцієнтів побудувати РС кривої задачі Діріхле для рівняння Пуассона чи Лапласа в прямокутній області на рядку точності 0(h ).
3.Інтегро-інтерпаляційний метод, один з варіантів якого називається методом балансу. Він найбільш надійний і застосовується а всіх випадках. В цьому методі після вибору шаблону область G розбивається на комірки певним чином зв’язаних з шаблоном. Диференціальне рівняння інтегрують по комірці і використовуючи формули векторного аналізу, приводять до інтегральної форми, що відповідає фізичному закону збереження. Наближено обчислюючи отримані інтеграли, за "квадратурними формулами, складають РС. Інтегро-інтерполяційний метод особливо корисний для рівнянь з негладкими, або розривними коефіцієнтами. Оскільки саме інтегральний метод запису законів збереження виділяє із всіх математично-допустимих розв’язків, таких рівнянь, фізично правильний узагальнений розв’язок. При побудові РС інтегро-інтерполяційним методом, застосовують методи інтерполяції інтегрального співвідношення, записаного відносно елементарної комірки сітки. Змінюючи інтерполяцію шуканого розв’язку і коефіцієнтів рівняння, можна отримати різні інтерполяційні схеми. ІІМ дозволяє будувати однорідні РС на скрізному рахунку, тобто такі РС, коефіцієнти яких обчислюється у всіх вузлах довільної сітки для будь-якої задачі із даного класу за одними і тими ж формулами . Це особливо важливо при розгляді крайових задач із розривними коефіцієнтами і таких крайових задач , в яких нерегулярність РС має різницеве походження, наприклад, за рахунок апроксимації розв’язку в граничних точках. РС, що виражають на сітці закони збереження називаються консервативними схемами. Крім того , при побудові РС повинні виконуватись не лише різницеві аналоги основних законів збереження, але й всі співвідношення, які диктуються фізичними законами даної задачі. В цьому випадку схеми називаються повністю консервативними. Повністю консервативні РС дозволяють вести розрахунки на порівняно грубих сітках .
|
Последнее изменение этой страницы: 2019-03-31; Просмотров: 254; Нарушение авторского права страницы