Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Три задачи по расчету простого трубопровода



Все основные расчеты, связанные с простым трубопроводом сводятся к решению следующих трех задач.

Задача 1. Заданы: Расход Q, диаметр d и длина l трубопровода, все величины местных сопротивлений zi, эквивалентная шероховатость материала стенок трубопровода кэ, кинематический коэффициент вязкости жидкости n.

Определить: Напор H.

 Имея заданные величины, их подставляют в основную зависимость (2.7) и находят Н. Так что первая задача решается простым вычислением; она является основной, так как к ней сводится решение остальных двух. Типичный пример первой задачи – определение высоты водонапорной башни для создания заданного режима.

Задача 3.1 Найти напор Н (например высоту Н водонапорной башни), если от нее по трубе диаметром d=50мм и длиной l=75м необходимо передать расход воды Q=3, 5л/с. Трубы новые, стальные, КЭ=0, 06мм, сумма всех коэффициентов местных сопротивлений равна 3, 8, т.е. Σ ξ =3, 8.

Решение. Находим число Рейнольдса Re по формуле:

Затем находим значение параметра (Re·КЭ)/d=107 для установления зоны сопротивления. Зона сопротивления – доквадратичная, поэтому применяем формулу А. Д. Альтшуля . Окончательно подставляем данные в формулу

Таким образом искомое значение напора равно 6, 4метра.

Задача 2. Заданы: Напор H, диаметр d и длина l трубопровода, все величины zi, кэ и n.

Определить: Расход Q.

Ошибочной в данном случае может показаться простота решения уравнения (2.7) путем извлечения квадратного корня. На самом деле во всех зонах, кроме квадратичной, величина l зависит от числа Rе

,

а, следовательно, от расхода Q. Если подойти формально к решению второй задачи, то (2.7) представляет уравнение с одним неизвестным, которое решается по известным алгоритмам с помощью ЭВМ. В инженерной практике может быть полезен прием решения (2.7) называемый графоаналитическим способом. Если задаться несколькими (5 - 10) произвольными, но реальными числовыми значениями расхода Q и подставить их в (2.7), то получится столько же числовых значений Н. Затем в системе координат Q – H наносят эти точки и соединяют их плавной кривой; она, как видно из (2.7) представляет квадратичную параболу, симметричную относительно оси H, рис. 3.1., (имеет смысл ее ветвь при Q > 0).

 Построенная по точкам, она отражает зависимость Q от H только для данного трубопровода, поэтому из графика по известному значению Н находят искомое значение Q.

         

                       Рис. 3.1.                                           Рис. 3.2.

Необходимо задавать такие величины расходов, чтобы получать напоры как меньшие, так и большие заданного.

Задача 3.2 Определить величину расхода Q, проходящему по трубопроводу диаметром d=50мм и длиной l=115м, если разность уровней в начале и в конце трубопровода равна Н=4, 3м. Трубы стальные, КЭ=0, 05мм, сумма всех коэффициентов местных сопротивлений равна 3, 2, т.е. Σ ξ =3, 2.

Решение. В данном случае имеем одно уравнение (2, 7) и одну неизвестную величину – расход Q, поэтому задачу лучше всего решать на ЭВМ одним из известных приближенных методов. Для инженерных расчетов применим простейший метод подбора. В качестве первоначального задаем расход, равный Q1=2, 5л/с. Посмотрим теперь, какому значению напора Н соответствует заданное значение Q1=2, 5л/с, т. е. решаем первую задачу по расчету простого трубопровода. Находим последовательно: Re1=63694, (Re1·КЭ)/d=64, λ 1=0, 023, Н1=4, 8м. Получен напор, больший заданного, поэтому необходимо взять меньший расход, например Q2=2, 2л/с, при этом расходе: Re2=56051, (Re2·КЭ)/d=56, λ 2=0, 024, Н2=3, 8м. Ясно, что искомый расход заключен между Q1 и Q2 и любой расход, взятый из этого промежутка сужает интервал поиска. Продолжая задание расходов из интервала Q1 > QX > Q2 и сравнивая полученные значения НХ с заданным Н=4, 3м, возможно решить задачу с любой точностью.

Если в данном случае применить формулу

,

то получим (определяя λ как в квадратичной зоне) Q=2, 57л/с, что является завышенным по сравнению с действительным значением.

Задача 3. Заданы: Напор Н, расход Q, длина трубопровода, все величины zi, кэ и n.

Определить: Диаметр d.

В этом случае уравнение (2.7) невозможно решить аналитически, но формально – это уравнение с одним неизвестным и решение его на ЭВМ трудностей не представляет. Для инженерных расчетов удобно применить графо-аналитический способ. Кривая зависимости H от d является гиперболой; как это следует из (2.7): при d → 0, H → ∞. При d → ∞, H → 0, рис. 3.2.

Для решения задач задают несколько значений диаметров, строят кривую и по известному значению Н находят искомое значение d.

Задача 3.3. Определить диаметр трубопровода, который должен пропускать расход Q=5, 6л/с при действуюшем напоре Н=3, 0м. Длина трубопровода l=80м, КЭ=0, 05мм, сумма коэффициентов местных сопротивлений на трубопроводе Σ ξ =4, 5.

Задача 3.4. При каких условиях решение задачи 2 (определение расхода) может быть получено в виде

т.е. аналитически.

Решение. Выражение, приведенное в условии задачи может быть получено в квадратичной области сопротивления, т.е. когда коэффициент гидравлического сопротивления l не зависит от числа Рейнольдса, а следовательно и от расхода. В этом случае точной является часто используемая при решении задач зависимость

Н = K × Q2,

где К – постоянная, на зависящая от Q.

Задача 3.5. Представим, что на дачном участке находится емкость с водой для полива, из которой выходит через отверстие отрезок шланга. Пояснить будет ли изменяться расход, а если будет, то как и по каким причинам, если: а) увеличить длину шланга; б) уменьшить диаметр шланга; в) немного прикрыть кран, ранее полностью открытый; г) изогнуть шланг (устроить поворот); д) увеличить диаметр шланга.

4. Последовательное и параллельное

соединение простых трубопроводов

Последовательное соединение

Рассмотрим систему из последовательно соединенных труб различных диаметров и длин. Такое соединение участков трубопровода называется последовательным, рис. 4.1.

 Рис.4.1.                                      Рис.4.2.

(4.1)
Очевидно, что расход во всех последовательно соединенных трубах один и тот же, а полные потери напора Н для всего трубопровода равны сумме потерь напора на всех участках, т.е.

(4.2)
Q1 = Q2 = Q3 = …= Qn = Q                             

H = H1 + H2 + H3 + …+ Hn ,                             

где H 1, H 2 , H 3,  …, Hn – потери напора на 1, 2, 3, …n-ом участке.

Учитывая, что для каждого участка последовательного соединения справедлива зависимость (2.7) и имея в виду, что на каждом участке расход одинаковый, запишем (4.2) в виде:

(4.3)
.  

Из (4.3) следует, что решение первой и второй задач при последовательном соединении участков трубопровода разного диаметра будет таким же как для простого трубопровода (трубопровода постоянного диаметра).

Третья же задача, если в ней потребовать определения диаметров для всех участков, становится неопределенной, так как в этом случае уравнение (4.3) содержит n неизвестных. Для решения этой задачи необходимо задать диаметры труб для всех участков, кроме одного, который может быть тогда определен.

Задача 4.1. Определить потери напора в стальном трубопроводе, состоящем из двух участков длиной l1 = 120 м и l2 = 250 м. Диаметры труб участков d1 = 120 мм и d2 = 100 мм. Расход воды в трубопроводе Q = 12, 2 л/с, кинематический коэффициент вязкости воды принять равным n = 0, 01 см2/с.

Решение. В данном случае общие потери равны сумме потерь на каждом из участков. По справочнику определяем кЭ = 0, 02 мм.

Определяем последовательно для первого участка

V1 = = 1, 1 м/с; Re1 = 129511; Re1×  = 10, 7; l1 = 0, 017;

Аналогично для второго участка

V2 = 1, 55 м/с; Re2  = 155414; Re2  = 31; l2 = 0, 017;

; h1 + h2 = 6.23 м.

Ответ: общие потери напора равны 6, 23 м.

Параллельное соединение

При параллельном соединении участков трубопровода жидкость, подходя с расходом Q к точке их разветвления А, распределяется по ответвлениям и далее снова собирается в точке их соединения В, рис. 4.2.

При параллельном соединение обычно заданы

o Суммарный расход до точки разветвления,

o Длина, диаметр, величина кэ каждой ветви.

Основными задачами гидравлического расчета в этом случае являются.

o Определение расходов Q 1, Q 2, Q 3, …, Qn, на отдельных участках, соединенным параллельно.

o Определение потерь напора Δ h между точками А и В, на каждом участке.

При решении задачи прежде всего учтём очевидное условие: равенство расхода Q сумме всех расходов на отдельных участках

(4.4)
Q = Q1 + Q2 + Q3+…+ Qn,                                    

(4.5)
Для дальнейшего решения представим, что в точках А и В установлены пьезометры; так как концы всех участков смыкаются в одних и тех же точках А и В, то потери на всех этих участках одинаковы и равны Δ h (Δ h – разность показаний пьезометров установленных в точках А и В). Поэтому справедливо следующие равенство

Δ h = Δ h 1 = Δ h 2 = Δ h 3 = …= Δ h n

Решая систему уравнений (4.5), можно выразить все расходы через один (например, через Q1) и подставив затем эти значения расходов в (4.4) найти Q1. после этого с помощью (4.5) определяют последовательно расходы Q2, Q3, …, Qn, а по любому из уравнений системы (4.5) определяют потери напора Н.

Задача 4.2. Определить расходы и потери напора в каждой из n параллельно соединенных ветвей, считая, что как местные сопротивления, так и сопротивления по длине – в квадратичной области.

Решение: В общем случае имеем для потерь в каждой ветви

(4.6)
         

Имеем также

  (4.7)
Q = Q1 + Q2 + …+ Qn,

Примем обозначения

тогда уравнения (4.6) перейдут в такие

(4.8)

Из последнего уравнения выражаем все расходы через один, например через Q1

(4.9)

Затем из (4.7) получаем

Решая последнее уравнение относительно Q1, определим его значение, а из (4.9) и все остальные расходы; по любой из зависимостей (4.6) находим hW.

Задача 4.3. Определить расходы и потери в каждой из трех ветвей параллельной сети, если длины и диаметры каждой из них равны соответственно l1, l2, l3 и d1, d2, d3.

Известно, что местных сопротивлений нет, расход перед точкой разветвления равен Q, кинематический коэффициент вязкости n и то, что во всех трех ветвях движение ламинарное.


Поделиться:



Последнее изменение этой страницы: 2019-04-09; Просмотров: 243; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.03 с.)
Главная | Случайная страница | Обратная связь