Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Обтекание воздушным потоком вращающегося шара.



Впр: Игравшие в футбол слышали о таком приеме, как 'закрутка' мяча. 'Крученый' мяч летит иначе, чем 'некрученый'. Очевидно, что в воздухе на него действует какая-то аэродинамическая сила. Как эта сила образуется и куда направлена?

Примечание 1: Этот эксперимент можно провести в домашних условиях, если использовать не тяжелый мяч, а легкий круглый надувной воздушный шар. Если шар закрутить и бросить вперед, то полетит он не прямо, а по дуге.

Примечание2: Отвлечемся от футбола и мяча. Формально задача сводится к тому, что нужно определить, как будут взаимодействовать между собой вращающийся шар и набегающий на него поток воздуха.

Отв: Для ответа на вопрос следует вспомнить две разобранные темы.

  Пограничный слой (1).
  Механизм образования дополнительной подъемной силы на крыле с несимметричным профилем (2).

Нарисуем схемы обтекания невращающегося и вращающегося шаров.
Смотри рисунок 43.

Если мяч не вращается, то воздух обтекает его симметрично. Условные струйки воздуха 1 и 2 обходят его сверху, а 3 и 4 снизу. Аэродинамическая сила R направлена вдоль набегающего потока.
Если мяч начинает вращаться, то картина его обтекания меняется. Так как на поверхности тела скорость воздуха относительно тела равна нулю (I), то струйка 3, при приближении к вращающейся поверхности мяча как бы 'захватывается' ею, 'прилипает' к ней и начинает обходить мяч сверху. Обтекание мяча становится НЕСИММЕТРИЧНЫМ.
Далее все происходит, как на крыле с несимметричным профилем. Струйка 3 бежит 'дальней дорогой', струйка 4 - 'ближней'. Струйка 3 бежит быстрее. Над мячом возникает разряжение. У R появляется боковая составляющая направленная, в данном случае, вверх.

Конструкция и эксплуатация параплана

1. Введение.
2. Купол параплана.
2.1. Конструкция.
2.2. Материалы
2.2.1 Требования к тканям.
2.2.2 Используемые ткани.
2.3. Эксплуатация.
2.4. Контрольный осмотр.
2.5. Перечень неисправностей, при которых эксплуатация купола не допускается.
2.6. Ремонт.
2.6.1 Порывы ткани до 30 мм.
2.6.2 Порывы ткани свыше 30 мм.
2.6.3 Частичные разрушения швов.
3. Стропая система.
3.1. Конструкция.
3.2. Конструкция стропы.
3.3. Материалы.
3.3.1 Требования к стропам.
3.3.2 Используемые материалы.
3.4. Эксплуатация.

3.5. Контрольный осмотр.
3.6. Перечень неисправностей, при которых эксплуатация стропной системы не допускается.
3.7. Ремонт.
3.7.1 Восстановление поврежденной оплетки (при условии того, что силовые нити не пострадали).
3.7.2 Замена строп.
4. Свободные концы.
4.1. Конструкция.
4.2. Используемые материалы.
4.3. Эксплуатация.
4.4. Контрольный осмотр.
4.5. Перечень неисправностей при которых эксплуатация свободных концов не допускается.
4.6. Ремонт.
5. Подвесная система
5.1. Эксплуатация и текущий ремонт.





































Введение.

Параплан - это сверхлегкий летательный аппарат, созданный на базе семейства двух оболочковых планирующих парашютов. Принципиальное отличие параплана от парашюта заключается в его предназначении.
Парашюты родились с развитием авиации прежде всего как средство спасения экипажа из гибнушего ЛА. Хотя в дальнейшем область их применения расширилась, парашют, тем не менее, является не летательным аппаратом, а средством мягкого спуска груза с неба на землю. Требования, предъявляемые к парашюту, достаточно просты: он должен надежно раскрываться, обеспечивать безопасную скорость снижения и, при необходимости, доставлять в заданное место груз с большей или меньшей точностью приземления. Первые парашюты имели круглые купола и были неуправляемыми. В дальнейшем, по мере развития техники, конструкция куполов совершенствовалась. Были изобретены парашюты-крылья. Они оказались не совсем парашютами. Их принципиальное отличие от 'круглых' состояло в том, что купол, благодаря особой форме, начинал работать как крыло и, создавая подъемную силу, позволял парашютисту не просто опускаться вниз, а выполнять планирующий полет. Точность приземления таких парашютов стала такой, что при соответствующей квалификации спортсмен-парашютист мог приземляться на метку диаметром 10-15 см. Появившаяся возможность выполнения планирующего полета на парашюте и родила идею параплана.
ПАРАПЛАН ЯВЛЯЕТСЯ ЛЕТАТЕЛЬНЫМ АППАРАТОМ. Хотя первые парапланы мало чем отличались от прыжковых парашютов-крыльев, тем не менее, предназначены они были именно для полета. Пилот-парапланерист не выпрыгивал из летящего самолета, а стартовал со склона горы, и задача у него была не опуститься на землю, а лететь, причем, желательно подольше и подальше. Постепенно параплан все дальше и дальше уходил от своего прародителя -парашюта. Сейчас, несмотря на некоторое сходство с парашютом, параплан - это уже принципиально иной летательный аппарат. Аэродинамическое качество лучших парапланов перевалило 8, в то время как у парашютов оно составляет всего 2. Внешний вид летящего параплана схематично показан на рисунке I.

Впр: Что такое аэродинамическое качество?
Отв:
Аэродинамическое качество - Максимально возможное отношение коэффициентов подъемной силы Су и сопротивления Сх. Или, что тоже самое, отношение Су/Сх при установке крыла на наивыгоднейший угол атаки. Можно сказать, что аэродинамическое качество показывает сколько метров по горизонтали может пролететь безмоторный Л А при потере одного метра высоты (если воздух неподвижен).

Впр: Что такое угол атаки крыла?
Отв: Угол между центральной хордой крыла и плоскостью XZ скоростной системы координат.

Впр: Что такое наивыгоднейший угол атаки?
Отв:
Угол атаки, при котором отношение Су/Сх максимально.

Купол создает подъемную силу, удерживающую параплан в воздухе.

Впр: Что такое подъемная сила?
Отв:
Подъемная сила - это составляющая полной аэродинамической силы. ориентированная вдоль оси Y скоростной системы координат.

Впр: Что такое полная аэродинамическая сила? Куда она направлена, если безмоторный ЛА выполняет прямолинейный полет с постоянной скоростью?
Отв:
Полная аэродинамическая сила - сила. с которой воздушный поток воздействует на тело. Если тело летит равномерно и прямолинейно, то сумма всех сил, действующих на него, равна нулю. На тело действуют ДВЕ силы: сила тяжести G, которая всегда направлена вниз, и уравновешивающая ее полная аэродинамическая сила R. Для того чтобы сумма G и R была равна нулю, R должна быть направлена вверх и по величине равняться G.
Пилот находится в подвесной системе. Она связана с куполом стропной системой и свободными концами. Строчная система выполняет еще одну функцию: участвует в формировании формы купола.

2. Купол параплана.
2.1. Конструкция.

Купол параплана сохранил от парашюта только название, фактически, это крыло. И выполняет оно те же функции, что и крылья самолета или планера. Но крыло это мягкое. В нем нет ни одного жесткого элемента. Крыло собирается из полотнищ ткани, формирующих верхнюю и нижнюю поверхности. Между ними вертикально вшиваются нервюры, определяющие профиль крыла. Различают силовые и промежуточные нервюры. К силовым нервюрам крепятся стропы. Промежуточные используются только для поддержания формы профиля. На рисунке 2 схематично показан разрез купола по силовой нервюре.

По передней кромке расположены воздухозаборники. Через них внутренняя полость купола наполняется воздухом, и он приобретает форму крыла, поддерживающуюся в полете избыточным давлением воздуха внутри купола, создаваемым скоростным напором. В нервюрах прорезаны перепускные отверстия, предназначенные для обеспечения свободного перетекания воздуха внутри купола. Это ускоряет наполнение купола на старте и облегчает его раскрытие в случае подсложений в воздухе. Носки нервюр усилены полужесткими пластинами. Эти пластины повышают жесткость передней кромки, что значительно облегчает старт, уменьшая вероятность 'залипания' воздухозаборников. Стропы крепятся к каркасным лентам, устанавливаемым для более равномерной передачи нагрузок от ткани купола к стропам.

2.2. Материалы.
2.2.1 Требования к тканям.

1) Воздухонепроницаемость.
2) Легкость и прочность.

Впр: На какой поверхности купола (верхней или нижней) должно отслеживаться более строго требование воздухонепроницаемости материала?
Отв:
На ВЕРХНЕЙ.
Разница давлений между внутренней полостью и верхней поверхностью купола существенно больше чем между внутренней полостью и нижней поверхностью. Следовательно нагрузка на ткань верхней поверхности тоже больше. Кроме того, воздухопроницаемость ткани на верхней поверхности купола приводит к перетеканию воздуха из внутренней полости купола на его верхнюю поверхность. Такая 'подпитка' увеличивает толщину пограничного слоя (ПС), способствует его отрыву. Отрыв ПС ведет к срыву потока и 'заднему сваливанию" параплана.

















Используемые ткани.

  Лаке (болонья со специальной воздухонепроницаемой пропиткой).
  Гельвинор (импортная).
  Каррингтон (импортная).

Лаке тяжелее импортных тканей, но дешевле и проще чинится в случае повреждений. До недавнего времени из лаке изготавливались парапланы, предназначенные для учебных полетов, а из импортных шились спортивные крылья. Сейчас, из-за роста цен на лаке, использование импортных тканей существенно расширилось. Изготовление из импортной ткани учебных куполов облегчает отработку начинающими пилотами старта и сокращает время наземной подготовки.

Эксплуатация.

  Не держите купол на солнце дольше, чем это абсолютно необходимо для выполнения полетов.

Ткани, из которых изготавливаются купола, разрушаются ультрафиолетовым излучением солнца. В перерывах между полетами купол следует уложить в тень или компактно сложить и накрыть рюкзаком, подвесной системой, одеждой. При несоблюдении данного требования потери прочности ткани за один летний сезон эксплуатации могут составить до 30%.

  Не подвергайте купол нагреву свыше 50 С.

В жаркий день в закрытых автомобилях на стоянке или в невентелируемой палатке температура может превысить 50 С. Это разрушает ткань и воздухонепроницаемую пропитку.

  Не летайте в мороз.

При температуре воздуха ниже -15 С воздухонепроницаемая пропитка ткани становится хрупкой и начинает разрушаться.

  Держите параплан сухим. Если он намок, высушите его в тени или в помещении. Не храните параплан мокрым.

При проведении полетов в зимнее время по окончании полетов из внутренней полости купола следует вытряхнуть снег и высушить купол в теплом помещении.
Бели вы намочили купол в морской воде, необходимо тщательно промыть его пресной водой (в том числе изнутри) так как кристаллизовавшаяся соль разрушает воздухонепроницаемую пропитку ткани и ослабляет стропы вплоть до необходимости их замены.

  Недопустимо выполнение полетов на мокром куполе.

Мокрая ткань под нагрузкой деформируется. В результате летные свойства параплана быстро и необратимо ухудшаются.

  Не стирайте купол с мылом или иным моющим средством. Пользуйтесь только водой. Никогда не трите ткань во избежание ее повреждения.

Для 'стирки' купол раскладывается на ровной и чистой поверхности и чистится влажными губкой или мягкой тряпкой.

  Берегите параллан от пыли. Избегайте приземления на песок.

Частицы песка и пыли разрушают воздухонепроницаемую пропитку ткани. Накапливающиеся внутри купола песок, листья, траву следует регулярно вытряхивать.

  Следите за тем, чтобы при приземлении купол не падал на землю воздухозаборниками.

Удар воздухозаборниками о землю приводит к резкому скачку давления внутри купола. Это ослабляет ткань, швы, разрушает воздухонепроницаемую пропитку. Если купол падает на землю воздухозаборниками, его следует затормозить энергичным и глубоким зажатием клевант.

  Не допускайте того чтобы при укладке параплана в рюкзак в нем оставались живые насекомые.

Если, по окончании полетов в летнее время, не вытряхнуть из купола кузнечиков и прочую живность, то она, безуспешно пытаясь выбраться на свободу, будет прогрызать в ткани купола отверстия диаметром 3-5 мм.


Контрольный осмотр.

Купол собран из полотнищ ткани и сшит нитками. С ним могут произойти две беды:

  ткань порвется;
  швы разойдутся.

Это и нужно проверить в приведенной ниже последовательности.

1) Проверить верхнюю и нижнюю поверхности купола на отсутствие повреждений. Проверить целостность швов крепления нервюр к верхней и нижней поверхностям.
2) Проверить целостность швов крепления нервюр в районе воздухозаборников.
3) Проверить целостность нервюр в местах расположения перепускных отверстий.


Поделиться:



Последнее изменение этой страницы: 2019-04-19; Просмотров: 294; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.023 с.)
Главная | Случайная страница | Обратная связь