Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Парадоксы целесообразности
Лиса вернулась с богатой добычей. Часть ее насытила лисий выводок, а оставшуюся пищу лиса прячет «на черный день». Тщательно роет яму, кладет в нее мясо и засыпает его землей. Наблюдая за ее поведением, можно прийти к выводу, что цель действий лисицы порождена ее «интеллектом». Столь целесообразно и «разумно» ее поведение. Но судьба оказалась для нашей героини по очень счастливой. Она попала в западню и стала жительницей зоопарка. Теперь ей уже не приходится тратить силы на добывание пищи. Ее кормят служители. Но что делать лисе, когда пищи избыток? Конечно, спрятать! И лиса скребет когтями бетонный пол вольера, а через некоторое время, когда «яма» готова, «прячет» в нее мясо. И после этого перестает обращать внимание на остаток трапезы, который, конечно, так и остается лежать на полу вольера. Лиса просто игнорирует его, не видит «зарытое» мясо. То, что в привычной для животного среде выглядело целесообразно, в условиях другой реальности становится лишенным каких-либо черт разумности. Такие узко специализированные действия, тесно связанные с типовой ситуацией в окружающем мире, принято называть рефлексами. Чем проще организован организм, тем жестче схема рефлекса. Тем нелепее выглядит их поведение в изменившейся среде. Разных видов рефлексов существует немало и классификация их довольно неустойчива. Для нас важно лишь то, что существуют рефлексы, которые помогают 26 живому организму приспосабливаться к условиям той среды, в которой он обитает. Рассмотрим два небольших примера. Зоопсихологи очень любят использовать для наблюдения за поведением живых организмов и за изменением этого поведения в условиях той или иной среды специально сконструированные лабиринты. Площадки и коридоры лабиринтов снабжаются всевозможными
приятными и неприятными для живущего в нем раздражителями. А различные размещения этих раздражителей позволяют экспериментаторам создавать по своему желанию ту или иную «географию» среды обитания. Простейшие лабиринты — Т-образные. На рис. 2.1 показано два таких лабиринта. Рассмотрим сначала верхний. Его использовал для своих опытов с обычными дождевыми червями американец Йеркс. В начале опыта черви помещались на площадку в основании буквы Т. Эту площадку ярко освещали, и червь начинал движение, стремясь найти более комфортабельное место. Там, где коридор имел раз- 27
ветвление, червь мог сделать выбор из двух альтернатив: поворачивать влево или поворачивать вправо. Конечно, червь «не мог знать», что левый коридор сулит ему одни неприятности. По дороге налево включено электрическое поле, а камера в конце коридора представляет собой ванночку с раздражающим червя солевым раствором. Зато правый коридор приводил червя в затемненную и влажную камеру, где он чувствовал себя превосходно. В' процессе эксперимента червь многократно преодолевал лабиринт и «принимал решение» о выборе коридора при разветвлении. И постепенно обучался поворачивать только в правый коридор. Другими словами, не имея никакой первоначальной информации об особенностях среды обитания, червь в процессе взаимодействия с окружающим миром вырабатывал целесообразный способ поведения в нем. Изменение среды экспериментатором (например, замена раздражителей левого коридора на благоприятные условия правого и перенесение этих раздражителей в правый коридор) делало поведение обученного червя нецелесообразным. Казалось бы, что червь должен был бы до конца своего существования быть в полном разладе с окружающей его средой. Но через некоторое число безуспешных попыток найти в правом коридоре уютную камеру для отдыха червь впервые поворачивал в левый коридор. Шло переучивание. И снова наступала пора полной адаптации червя к изменившемуся миру. Рассмотрим теперь нижний лабиринт, показанный на рис. 2.1. Его использовал другой зоопсихолог— Торндайк для опытов с крысами. При разветвлении коридора голодная крыса, привлекаемая запахом приманки, должна сделать альтернативный выбор между левым и правым коридорами. Но в каждом из них крысу ждут неприятные ощущения от раздражения электрическим током. Эти раздражения происходят с фиксированными вероятностями Рп и Pл , которые не изменяются в одной серии опытов. Цель эксперимента — определить, сможет ли крыса в процессе обучения научиться выбирать только тот коридор, ведущий к пище, в котором вероятность электрического раздражения меньше. Опыты Торндайка повторяли неоднократно. В экспериментах принимали участие не только кры- 28 сы, но и другие животные. Формы лабиринтов изменяли. Но основной качественный результат во всех экспериментах оставался неизменным. После более или менее длительного периода обучения наступал момент, когда животное правильно оценивало разницу в значениях Ру и Рл (в случае Т-образного лабиринта) и принимало целесообразное решение по выбору маршрута движения к пище. При незначительной разнице в значениях вероятностей болевых раздражении выбор пути движения происходил без заметных предпочтений. Казалось бы, что математики должны были бы обратить на эти интересные факты свое внимание. Но этого не произошло. Эпоха моделей и открытий на стыке наук еще не наступила, науки еще сильно разобщены, у представителей каждой из них свой «внутрицеховой» язык, непонятный для непосвященных. Интерес к результатам в соседних областях знаний минимален. Идет глубокий анализ явлений в отдельных областях, а время синтеза и интеграции знаний еще отделено от времени опытов Торндайка десятилетиями. Альянс между математикой и зоопсихологией в те далекие годы, предшествующие первой мировой войне, не состоялся. Математики не заметили опытов Торндайка, а психологи были очень и очень далеки от овладения языком математики. И лишь через 50 лет наступило время посмотреть па поведение червей и крыс с иной точки зрения. Маленькая зверушка» Моделирование и объяснение эффекта Йеркса и Торндайка были получены в цикле исследований по моделированию простейших форм поведения, выполненных в 60-х годах нашего века оригинальным и глубоким советским ученым, оказавшим заметное влияние на все развитие работ в области моделирования поведения, Михаилом Львовичем Цетлиным. Он был одповременно и изобретательным инженером, и великолепным математиком. Активно и вовсе не дилетантски интересовался медициной и биологией. Талант инженера, превосходная математическая интуиция и способность к точной, но одновременно весьма образной интерпретации фактов самых раз- 29 личных областей науки позволили ему объединить усилия специалистов в области математики, биологии, психологии, технических наук. Этот «незримый колледж» сложился в своеобразное научное направление, подобного которому в то время, пожалуй, не было нигде в мире. В рамках этого научного коллектива были решены многие важные научные и прикладные проблемы (например, впервые в мире создан биоуправляемый протез). Но нас интересует лишь одно направление в его работе. Направление, которое вылилось со временем в новую научную теорию — теорию коллективного поведения и управления. В основе этой теории лежит гипотеза простоты, высказанная М. Л. Цетлиным. Суть ее сводится к тому, что любое достаточно сложное поведение слагается из совокупности простых поведенческих актов. Их совместная реализация и простейшее взаимодействие приводят в результате к весьма сложным поведенческим процессам. Отсюда возникла идея о том, что совместное функционирование простых «маленьких зверушек» в сложной среде способно обеспечить устойчивое существование всего коллектива, который можно рассматривать как некий «сверхорганизм». Клетки человеческого тела, пчелы улья или муравьи муравейника должны вызвать у читателя нужную ассоциацию. Вернемся к схеме опыта Торндайка. На рис. 2.2 показана некоторая интерпретация этой схемы. Маленькая зверушка воспринимает из окружающей среды сигналы, которые являются оценками действий, совершенных ею перед этим. Эти оценки будут нами рассматриваться как двоичные: поощрение за выполненное действие (нештраф) и наказание за него (штраф). Зверушка может выбирать свои действия из некоторого заданного конечного набора D==[di, ds, ..., dn]. Значения оценок действия (будем их обозначать 1 и 0) формируются средой. Одна среда 30 отличается от другой тем, как вырабатываются оценки. Рассмотрим один важный частный случай, когда среда формирует эти оценки следующим образом. Если зверушка делает в некоторый момент действие di , то с вероятностью Pi среда выдает оценку «наказание» (штраф) и с вероятностью 1—Pi —оценку «поощрение» (нештраф). Если с течением времени значения Pi остаются неизменными, то такая среда называется стационарной. Для полного определения стационарной среды достаточно задать вектор E=(P1,P2,...,Pn). Вернемся к опыту с крысой, описанному выше. В нем мы имеем дело со стационарной средой вида Е=(Рп,Рл), компоненты которой характеризуют вероятности наказаний (болевых раздражений) при выборе крысой правого или левого коридоров в Т-образном лабиринте. Эти выборы характеризуют множество действий крысы. М. Л. Цетлин поставил перед собой вопрос: «Сколь сложным должна быть зверушка, которая подобно крысе в опытах Торндайка могла бы адаптировать свое поведение к стационарной среде так, чтобы всегда вести себя наиболее целесообразным образом?» Но прежде чем дать ответ на подобный вопрос, следует уточнить само понятие целесообразности поведения. Заменим нашу зверушку механизмом случайного равновероятного выбора действий. На каждом шаге своего функционирования этот механизм, никак не учитывая приходящих на его вход сигналов штраф — нештраф, с одинаковой вероятностью, равной 1/п , выбирает любое из доступных ему действий. В опытах с крысами это соответствовало бы следующей ситуации. Перед началом левого и правого коридоров имеются запирающиеся дверцы. Когда крыса подбегает к развилке, то всегда оказывается открытой лишь одна из них. Открывание их происходит равновероятно. Для этого экспериментатор может, например, подбрасывать монету и на основании выпадения ее той или иной стороной открывать соответствующую дверцу. В таких условиях крыса, конечно, лишена возможности принимать какое-либо решение о выборе маршрута движения. Это решение «принимает» за нее механизм случайного равновероятного выбора. 81 При бесконечном повторении опыта со зверушкой, устроенной как механизм равновероятного выбора действий, будет накоплен некоторый суммарный штраф. Его величина определяется как математическое ожидание штрафа по формуле, хорошо известной в теории вероятностей: Значение М* позволяет интерпретировать понятно целесоорбазного поведения следующим образом. Будем говорить, что зверушка ведет себя целесообразно, если накопленный ею суммарный штраф меньше, чем в случае механизма равновероятного выбора действий. А нецелесообразным будем считать такое поведение, при котором этот суммарны» штраф оказывается больше М*. Пусть, например, в Т-образном лабиринте Рп=0,9, а Рл = 0,4. Если бы крыса заранее знала эти вероятности, то она, конечно, всегда бы предпочитала бежать в левый коридор. Суть опытов Торнданка а том, что именно это предпочтение и сформируется у крысы после некоторого опыта предварительного обучения. Если при наших значениях вероятностей штрафов за действия крысу поставить в условия равновероятного выбора (ввести открывающиеся равновероятно дверцы), то суммарное значение штрафа для нее будет равно М == 0,5*0,9 + 0,5*0,4 == 0,65. Поведение крысы будет целесообразным, если суммарный штраф, накопленный ею, будет меньше 0,65. А наилучшим ее поведением будет то, при котором этот штраф достигнет своего минимума (при выборе только левого коридора). В этом случае М=0*0,9+1*0,4=0,4. Поставим перед собой следующую задачу: можно ли построить техническое устройство, которое вело бы себя аналогично нашей зверушке, обеспечивая целесообразное поведение в любой априорно неизвестной стационарной среде? И одним из удивительных результатов теории коллективного поведения явилось создание конструкции ряда технических устройств, способных к этому.
32 |
Последнее изменение этой страницы: 2019-05-06; Просмотров: 199; Нарушение авторского права страницы