Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Сущность и значение исследования.
Каждая задача на построение включает в себя требование построить геометрическую фигуру, удовлетворяющую определенным условиям, которые в большинстве своем задаются размерами или положенном некоторых геометрических образов. Условия задач формулируются в самом общем виде, а поэтому исходные данные являются как бы параметрами, принимающими всевозможные допустимые значения. Допустимые значения определяются наиболее естественным образом. В задаче: «Построить треугольник по двум сторонам а и b и углу С между ними» допустимыми значениями для а и b будут всевозможные отрезки, которые можно характеризовать положительными числами, их длинами, а угол С может принимать всевозможные значения от 0° до 180°. В задаче: «Построить окружность, касающуюся длиной окружности в данной на ней точке и данной прямой» прямая может занимать любое положение на плоскости; окружностью также может быть любая окружность на плоскости, но так как окружность характеризуется положением центра и величиной радиуса, то можно сказать, что центром данной окружности может быть любая точка плоскости, а радиусом – любой отрезок, длина которого 0 < R < ∞. (Иногда рассматривают и направленные окружности, тогда уже радиус может быть и неположительным чистом, но подобные случаи обычно оговариваются в условии задачи.) Точка также может занимать произвольное положение, но уже не на плоскости, а на данной окружности, так как она обязательно должна принадлежать ей. Иногда невозможность построения искомой фигуры очевидна, если хоть один из данных элементов не принадлежит области допустимых значений. Например: «Построить треугольник по двум сторонам а и b и углу между ними в 240°». Такая задача решения не имеет, так как любой угол треугольника всегда меньше 180°. Но если все данные принадлежат соответствующей области существования, то в большинстве случаев многообразие возможных положений, характер изменения данных приводит, как и в алгебре при решении задач с параметрическими данными, к постановке вопросов: При каких данных задача не имеет решения? Как изменяется ответ при определенном характере изменения данных? Каковы должны быть значения исходных данных, чтобы получить намеченный ответ? и т. п. При анализе, а значит, и при построении всегда исходим из предположения, что искомая фигура существует, не учитывая всего многообразия данных, их размеров и взаимных соотношений. Решение задачи на построение считается законченным, если указаны необходимые и достаточные условия, при которых найденное решение является ответом на задачу. Значит, мы должны установить, при всяком ли выборе данных задача имеет решение и если имеет, то сколько. Например: «Построить окружность, проходящую через три данные различные точки». Если данные точки не лежат на одной прямой, то задача имеет решение и притом только одно; если же точки лежат на одной прямой, то задача решения не имеет. Если при определенном сочетании данных общее решение не применимо, то необходимо дать новое решение, которое часто не незначительно отличается от общего или является его вырожденным случаем. Иногда план решения сохраняется, по его осуществление с помощью инструментов выполняется не так, как в общем случае. В средней школе обычно ограничиваются лишь двумя моментами: 1) выясняют число решений в зависимости от данных и 2) изменяют или упрощают решение для отдельных случаев. Правда, для некоторых задач в исследовании дается еще и ответ па вопрос: при каких условиях искомая фигура удовлетворяет тем или иным дополнительным условиям. Например: «Около данного треугольника описать окружность. Выяснить, когда центр этой окружности находится внутри треугольника, вне треугольника или принадлежит одной из его сторон». Ответ на последний вопрос также дается при исследовании. Исследование является составной частью решения. Решение задачи на построение можно считать законченным, если узнаем, сколько искомых фигур получим при определенных данных, и, в частности, указано, когда не получим искомый геометрический образ. Но исследование в задачах на построение, как и исследование при решении других задач по математике, имеет и общеобразовательное значение. В процессе исследования учащиеся упражняются в практическом применении диалектического метода мышления. Они видят, что изменение данных задачи вызывает изменение искомой фигуры. Мы имеем дело нес закостенелыми, а с изменяющимися геометрическими образами, изменение одних величин обусловлено изменением других. Для правильного проведения исследования нужно обладать хорошо развитым логическим мышлением. Значит, с другой стороны, исследование задач на построение является хорошим материалом для развития логического мышления учащихся. Заметим, что и при решении задач на доказательство или вычисление учащимся нередко нужно для построения правильного чертежа также проводить исследование. Часто необходимо предварительно выяснить, какой вид данного треугольника (остроугольный или тупоугольный), какие стороны принять равными данным отрезкам. Например, при решении задачи: «Определить периметр равнобедренного треугольника со сторонами в 7 см и 3 см»вначале нужно установить, что основанием является отрезок длиной 3 см, а не 7 см. Нередко уже при анализе задач на построение мы вынуждены учитывать различные положения данных и искомых элементов. Например, решая задачу: «Дана окружность и на ней три точки М, N и Р, в которых пересекаются с окружностью (при продолжении) высота, биссектриса и медиана, исходящие из одной вершины вписанного треугольника. Построить этот треугольник», в первую очередь нужно выяснить, что точка N (соответствует биссектрисе) расположена между М и Р, рассматривая дугу MP, меньшую полуокружности. Приведем еще такой пример: «На окружности даны две точки А и В. Из этих точек провести две параллельные хорды, сумма которых дана». Решение задачи легко свести к построению вписанной трапеции с заданной суммой оснований, вершинами которой являются точки А и В. Но решение зависит от того, будет ли АВ боковой стороной трапеции или ее диагональю. Вновь анализ включает в себя элементы исследования. Несмотря на необходимость и целесообразность исследования при решении задач на построение, ему и в школе, и в методической литературе уделяется недостаточно внимания. Большое внимание уделяется обычно отысканию решения – анализу. Анализ – основной этап при решении задач на построение: не найдя решения, нельзя провести ни построения, ни доказательства, ни исследования. Но по трудности выполнения исследование является не менее сложным этапом. Наибольшее количество ошибок допускается именно при исследовании. Методы решения задач на построение. Метод геометрических мест. 1. Понятие «геометрическое место точек», являющееся синонимом понятия «множество», одного из основных понятий современной математики, вводится в элементарной геометрии исключительно ввиду его наглядности, образности; слово «место» как бы отвечает на вопрос, где «помещаются» точки, обладающие тем или иным свойством. Знание геометрических мест точек, обладающих определенным свойством, облегчает нахождение решения для многих практических задач. Например, для решения задач на сопряжение окружностей и прямых, с которыми учащиеся встречаются довольно часто на уроках труда в школьных мастерских при опиливании криволинейных поверхностей (изготовление дуги для лобзика, отвертки, гаечного ключа и т. п.), при изготовлении приборов, пособий для школы, которые они часто делают не по чертежам, а по техническим рисункам, не выполняя деталировки каждой детали, необходимо знать соответствующие геометрические места. Без знания геометрических мест центров окружностей, касающихся данных прямых или окружностей при определенных ограничениях, семиклассники не смогут на уроках черчения понять способы решения задач на сопряжение углов дугами, сопряжение окружности с прямой при помощи дуги данного радиуса и т.п. Следует учитывать, что понятие «геометрическое место точек» необходимо и в курсе алгебры при изучении графиков простейших функций в VII-VIII классах. График функции определяется как геометрическое место точек плоскости, координаты которых являются соответственными значениями аргумента и функции. Понятие графика необходимо и в курсе физики, где в последние годы все большее значение приобретает графический метод. В VI-VII классах нельзя отказываться и от решения задач на построение методом геометрических мест, одним из основных методов конструктивной геометрии. Решая задачи на построение, учащиеся учатся применять свои знания, ибо они должны сами отвечать на поставленные вопросы. В настоящее время главной задачей учителей математики является не столько сообщение математических фактов, определений, формул, теорем, сколько необходимость учить детей мыслить, учить их самостоятельно работать. 2. Учащиеся VI класса не сразу сознательно, глубоко усвоят понятие «геометрическое место точек». Важно, чтобы они с данными словами связывали более полную группу геометрических фигур, чтобы понятие охватывало целый класс, а не один – два отдельных примера. Учащиеся должны видеть различные примеры геометрических мест точек в различных формулировках, чтобы на основе анализа и синтеза осознать общность этого понятия, охватывающего обширный класс геометрических фигур, создать себе соответствующее представление об этом понятии. Трудным для понимания шестиклассников является и абстрактное понятие «множество». Приводимые примеры множеств (множество учащихся, деревьев в саду и т.п.), в большинстве своем, есть конечные множества, а почти все геометрические места точек, рассматриваемые в школьном курсе геометрии, являются бесконечными точечными множествами. 3. Понятие геометрического места точек, обладающих некоторым свойством, вводим на примере геометрического места точек, равноудаленных от двух данных точек. После изучения признаков равенства прямоугольных треугольников решаем задачу: «Найти точку, равноудаленную от двух данных точек А и В» (рис. 27). Рис. 27
Учащиеся обычно указывают лишь точку О, середину отрезка АВ. А нет ли на плоскости еще точек, равноудаленных от А и В? При построении с помощью циркуля не- скольких таких точек учащиеся самостоятельно припоминают свойство точек оси симметрии и говорят, что точек, равноудаленных от А и В, будет много, все они лежат на оси симметрии данных точек А и В. Можно непосредственно, основываясь на признаках равенства прямоугольных треугольников, доказать, что всякая точка, равноудаленная от данных точек А и В, лежит на их оси симметрии, то есть на перпендикуляре, проведенном к отрезку АВ через его середину, и наоборот, всякая точка этого перпендикуляра равноудалена от точек А и В. После этого даем определение геометрического места точек, обладающих некоторым свойством, как множества всех точек, обладающих этим свойством, и только таких точек, и предлагаем учащимся сформулировать результат решения задачи и записать в тетради, что геометрическое место точек, равноудаленных от двух точек, есть ось симметрии данных точек. Здесь впервые встречаемся не с отдельной, фиксированной точкой, а с любой точкой прямой. До этого учащиеся почти всегда имели дело с неподвижными, определенными по положению точками, а здесь точка может перемещаться некоторым образом, но все время она обладает определенным свойством. Поэтому большую пользу окажет учащимся наглядное пособие с неподвижными точками А и В и перемещающейся по их оси симметрии точкой О, соединенной резинкой с точками А и В, с помощью которого хорошо разъяснить смысл выражения: «Любая точка оси симметрии равноудалена от А и В». Примечание. Включение в определение лишних с научной точки зрения слов «и только таких точек» вызвано педагогическими соображениями. В противном случае в определении явно не выделяется необходимость доказательства двух взаимно обратных теорем для утверждения, что та или иная фигура является геометрическим местом точек, обладающих определенным свойством. 4. Целесообразно в качестве домашнего задания к этому уроку предложить учащимся повторить определение окружности (§ 12 по учебнику Н. Н. Никитина). Тогда на уроке, уточнив, что все точки окружности находятся от центра на одном и том же расстоянии, а всякая точка, взятая внутри (вне) окружности, находится от ее центра на расстоянии, меньшем (большем) радиуса, делаем вывод, что окружность можно рассматривать как геометрическое место точек плоскости, находящихся на данном расстоянии R от данной точки О. Предлагаем учащимся самостоятельно найти все точки, находящиеся от данной точки О на расстоянии, меньшем чем R. И при разборе этого задания подчеркиваем, что геометрическим местом точек может быть прямая, окружность и даже круг, а в дальнейшем будет показано, что геометрическим местом точек, обладающих некоторым свойством, может быть луч, отрезок прямой, две прямые или две окружности и даже отдельные точки. Разбирая такие конкретные примеры, мы показываем учащимся разнообразие видов тех множеств точек, которые могут быть геометрическими местами точек. Затем надо показать учащимся, что одно и то же геометрическое место точек может встречаться в различных формулировках, для чего сравниваем, например, известное им геометрическое место точек, равноудаленных от двух данных точек, с такими, как геометрическое место точек, равноудаленных от концов дачного отрезка; геометрическое место вершин равнобедренных треугольников с общим основанием (середина основания уже исключается). 5. Применяя эти геометрические места точек, решаем задачи методом геометрических мест, начиная с простейшей задачи. Какие же задачи считать простейшими? Сущность метода геометрических мест состоит в следующем: 1) Решение задачи сводим к отысканию точки, удовлетворяющей определенным условиям. 2) Отбрасываем одно из этих условий, получим геометрическое место точек, удовлетворяющих оставшимся условиям. 3) Отбрасываем затем какое-нибудь другое условие, получим новое геометрическое место точек, удовлетворяющих остальным условиям. 4) Искомая точка, удовлетворяющая всем условиям, является точкой пересечения полученных геометрических мест. Какую задачу ни возьмем, одновременно второй и третий этапы отсутствовать не могут, ибо тогда это не была бы задача на метод геометрических мест. Но без одного из этих этапов можно обойтись, если в условии указать геометрическую фигуру, которой должна принадлежать искомая точка. Чтобы избежать и первого этапа, достаточно задачу сформулировать в виде: «Найти точку...». Следовательно, простейшими задачами на метод геометрических мест будут задачи вида: «На какой-либо фигуре найти точку, удовлетворяющую определенным условиям. Метод осевой симметрии. 1. Осевая симметрия – это первый из видов движения, преобразования, с которым учащиеся встречаются в систематическом курсе геометрии. В настоящее время в геометрии большое значение имеют конструктивные навыки, при помощи которых учащиеся овладевают методами преобразования одних геометрических фигур в другие, и постепенно знакомятся с важной идеей геометрического преобразования, которое является аналогом функциональной зависимости в геометрии. Курсы алгебры и арифметики подчинены одной идее, идее функциональной зависимости. Мы стремимся воспитывать у учащихся функциональное мышление, умение находить законы связей между величинами. Подчинив курс геометрии идее геометрических преобразований, аналогу функциональной зависимости, подчиняем все изложение курса математики одной руководящей идее. В новой программе по геометрии значительное внимание уделено геометрическим преобразованиям, то есть таким операциям, когда каждой точке одной фигуры по некоторому закону ставится в соответствие определенная точка другой фигуры. В средней школе из геометрических преобразований рассматриваются различные виды движений, а также подобие фигур. Изучение движения в средней школе принесет ощутимые плоды, если эти преобразования станут основой курса геометрии, а не придатком, органически не связанным с ним. Движение должно служить одним из основных методов доказательства многих теорем геометрии в VI-VII классах. Более того, идея движения может быть положена в основу построения значительной части курса геометрии. Излагаемый материал приобретает кинематический характер, значительно облегчается понимание учащимися образования и построения геометрических фигур. Применяя понятие осевой симметрии, можно значительно усовершенствовать школьный курс геометрии. Например, применение свойств оси симметрии позволяет довольно просто изложить три признака равенства треугольников, специальные случаи равенства прямоугольных треугольников и ряд других тем из главы «Треугольники». 2. Различные виды движений дают возможность решать практически важные задачи на построение, доказательство и задачи вычислительного характера. Поэтому все изложение должно сопровождаться упражнениями, среди которых предпочтение следует отдавать задачам на построение и на доказательство. Нужно решать и задачи на вычисление, особенно с практическим содержанием, но в большинстве случаев при решении таких задач геометрическая сторона вопроса в значительной степени поглощается арифметическими и алгебраическими операциями. 3.Известно, что осознанные знания могут быть получены только в процессе активной и творческой деятельности самостоятельно или под руководством учителя. При изучении осевой симметрии имеются большие возможности привлечь учащихся к формированию самого понятия. Действительно, учащиеся неоднократно наблюдали в жизни примеры симметричных фигур, многие из таких предметов они рисовали или изготовляли на уроках в начальной школе и в V классе: вырезали симметричные фигуры из бумаги, рисовали симметричные орнаменты, листья и цветы, изготовляли симметричные предметы из дерева и металла, применяя симметричные инструменты. Анализируя эти знакомые учащимся примеры, особенно примеры предметов, которые были объектом или орудием трудa учащихся в школьных мастерских, на уроках домоводства или общественно полезного труда, мы постепенно формируем представление о симметричных фигурах. Часть работ (изготовление мотыги, планки для граблей и т. п.), требующих построения точек, симметричных относительно определенной оси, учащиеся изготавливают до изучения соответствующего материала в курсе геометрии. поэтому при объяснении осевой симметрии, чтобы подчеркнуть значение этого понятия, в качестве симметричных фигур использовали пособия, изготовленные учащимися этого же класса в школьных мастерских, причем выбирали всегда два однотипных пособия 9молотки, стамески), одно из которых сделано аккуратно, точно по чертежу, а второе такое, у которого все размеры выдержаны, но нарушена симметричность. Совместными усилиями учащиеся выяснили, почему второе пособие получилось плохим, и как нужно было правильно сделать разметку. 4. В школьном курсе геометрии выражение «симметрия» имеет двоякий смысл: оно обозначает и вид движения (преобразование) и свойство плоской фигуры, обладающей симметрией, которая при соответствующем движении переходит сама в себя. Это различие мы должны учитывать, ибо в преподавании приходится иметь дело с каждым из этих истолкований симметрии. И одна из задач учителя – добиться того, чтобы учащиеся восприняли симметрию как один из способов преобразования одной фигуры в другую, а не как свойство неподвижной фигуры. Поэтому после введения определения симметричных относительно оси точек, внимание учащихся переключаем на практику построения взаимно симметричных относительно оси фигур, для чего решаем задачи вида: 1) Построить точку, симметричную данной точке относительно данной прямой. 2) Построить отрезок (прямую), симметричный данному отрезку (прямой) относительно данной прямой. 3) Построить треугольник, симметричный данному треугольнику относительно данной прямой. 4) Построить окружность, симметричную данной окружности относительно данной прямой. 5) Построить треугольник, симметричный данному прямоугольному треугольнику относительно а) его катета; б) его гипотенузы. При решении этих задач одновременно устанавливаем и равенство взаимно симметричных отрезков, углов и других фигур, иллюстрируя наши утверждения перегибанием чертежа по оси симметрии, что помогает найти и сделать понятным способ решения задачи. Например, при решении задач вида: «Даны две прямые. Найти на них точки, симметричные относительно третьей прямой» очень удобно нанести все три прямые на кальку и перегнуть чертеж по третьей прямой. Тогда решение задачи становится очевидным и понятным для всех учащихся. Таким же образом решаем задачи: а) Даны прямая и треугольник. Найти на одной прямой и на контуре треугольника точки, симметричные друг другу относительно другой прямой, б) Даны окружность и треугольник. Найти на окружности и на контуре треугольника точки, симметричные друг другу относительно данной прямой. Чтобы показать учащимся важность и необходимость умений и навыков в построении симметричных относительно оси точек, кроме разбора известных уже им примеров, полезно выполнить разметку какого-нибудь изделия, которое нужно будет изготовлять в ближайшее гремя. 5. Обучение должно вестись так, чтобы учащиеся усвоили знания не как изолированные, оторванные от других, а как подготовленные предшествующими знаниями, и которые естественно включаются в последующие. Поэтому в дальнейшем, где только возможно, следует использовать понятие и свойства осевой симметрии и правила построения симметричных фигур при изучении новых геометрических образов и при решении доступных учащимся задач на построение. Знание свойств симметричных относительно оси фигур позволяет рассматривать решение основных задач на построение с помощью циркуля и линейки до изучения признаков равенства треугольников и понятия геометрического места точек. Сами построения являются для учащихся понятными и естественными. Действительно, чтобы построить точку, симметричную относительно некоторой прямой данной точке А, не лежащей на этой прямой, построим две окружности, проходящие через точку А с центрами в произвольных точках О1, и О2 данной прямой. Так как для окружностей данная прямая является осью симметрии, то вторая их общая точка А1 будет искомой точкой. Но этим самым мы решили и задачу: «Через точку А, не лежащую на данной прямой, пронести перпендикуляр к этой прямой, Аналогичным образом решается и задача о построении оси симметрии двух данных точек; одновременно получаем решение задачи о делении данного отрезка пополам. Так как биссектриса угла есть осьсимметрии его сторон, то для построения ее достаточно найти на сторонах угла две точки, симметричные относительно искомой оси, каковыми будут точки, находящиеся на равных расстояниях от вершины угла, принадлежащей оси симметрии. В результате задача свелась к предыдущей с той лишь разницей, что достаточно найти одну точку оси, так как вторая точка – вершина угла – нам известна. Этим же построением решается и задача о проведении к прямой перпендикуляра через данную на ней точку, так как искомый перпендикуляр по существу есть биссектриса развернутого угла с вершиной в данной точке. Применение осевой симметрии значительно упрощает и облегчает усвоение таких разделов темы «Окружность», как свойство диаметра, перпендикулярного к хорде, свойство дуг, заключенных между параллельными хордами. Без большой затраты времени можно тщательно рассмотреть весьма важный для приложений вопрос о взаимном расположении окружностей, если обратить внимание учащихся на симметричность общих точек двух окружностей относительно их линии центров. Учащиеся смогут самостоятельно указать необходимые и достаточные условия касания двух окружностей, что нужно при изучении соответствующих геометрических мест центров окружностей, касающихся данной. В VII-VIII классах метод осевой симметрии часто применяется вместе с другими методами. |
Последнее изменение этой страницы: 2019-10-03; Просмотров: 177; Нарушение авторского права страницы