Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Метод центральной симметрии.



1. В течение двух лет мы знакомили учащихся с цен­тральной симметрией примерно так, как в учебнике Н.Н. Никитина. Рассматривали построение и свойства точек, отрезков и треугольников, симметричных соответствующим данным фигурам относительно некоторой точки О. Затем рассматривали вопрос о центре симмет­рии параллелограмма, решая предварительно задачу: «Если в параллелограмме через точку О пересечения его диагоналей провести произвольную прямую, то отрезок прямой, заключенный между его сторонами, делится в точке О пополам». Получив соответствующий вывод о центре симметрии параллелограмма, вводим понятие центрально-симметричных фигур, подчеркивая, что каж­дой точке М фигуры, имеющей центр симметрии в точ­ке О, соответствует другая точка М1 этой же фигуры, отстоящая от О на такое же расстояние, как и точка М, и лежащая на прямой МО.

Решали такие задачи на построение с применением центральной симметрии;

1) Построить треугольник по двум сторонам и ме­диане, проведенной к третьей стороне.

2) Дан угол и точка Р внутри него. Провести через эту точку прямую так, чтобы отрезок ее, заключен­ный между сторонами угла, делился в данной точке пополам.

У большинства учащихся не создавалось правильного представления о применении здесь центральной сим­метрии, они рассматривали эти решения, как решения задач дополнением искомых треугольников до паралле­лограммов.

Причины того, что это понятие оказалось трудным при таком изложении, следующие: во-первых, понятие центральной симметрии точек и фигур вводилось фор­мально, без активного участия учащихся в формирова­нии этого понятия; во-вторых, примеры задач на постро­ение для иллюстрации применения центральной симмет­рии подобраны неудачно; в-третьих, в курсе геометрии по установившейся традиции центральная симметрия не находит должного применения.

2. Результаты оказались значительно лучшими, когда понятие центральной симметрии начали вводить так же, как и понятие осевой симметрии. Объяснение этого по­нятия сопровождалось показом соответствующих на­глядных пособий, а также изделий, для которых учащи­еся данного класса выполняли разметку, принимая точку пересечения базисных линий за центр симметрии и от­кладывая на одной и той же прямой по разные от этой точки стороны равные отрезки.

Затем решаем задачи вида: «Построить точку (отре­зок, треугольник), симметричную данной точке (отрезку, треугольнику) относительно данного центра О», устанав­ливая одновременно равенство центрально-симметричных отрезков и треугольников. Чтобы учащиеся поняли, что любые центрально-симметричные фигуры равны, предлагаем им начертить произвольную прямолинейную фигуру и найти центрально-симметричную ей фигуру по отношению к некоторому центру. Поворачивая одну из них на 180о около центра О, учащиеся убеждаются, что эти фигуры совпадают. Затем, как и в прежнем вариан­те, вводим понятие центрально-симметричных фигур, рас­сматривая предварительно симметрию параллелограмма. Чтобы показать приложение центральной симметрии к решению задач на построение, подбираем задачи, для решения которых требуется применить действительно центральную симметрию, а не дополнение до параллело­грамма.

Метод параллельного переноса.

В средней школе умножение движений не рас­сматривается, и мы не можем вводить параллельный перенос как произведение двух отражений около парал­лельных осей, а вынуждены исходить из свойств парал­лелограммов.

Целесообразно с параллельным переносом знакомить учащихся в процессе решения задач па построение при изучении темы «Четырехугольники».

Имеются задачи вычислительного характера и на доказательство, требующие проведения прямых, парал­лельных боковой стороне трапеции, или в которых уже проведена такая прямая, например:

1) В трапеции ABCD из вершины В проведена пря­мая, параллельная боковой стороне CD, до встречи в точке Е с большим основанием А D. Периметр треугольника АВЕ равен 1м, а длима ED равна 3дм. Определить периметр трапеции.

2) Доказать, что в равнобедренной трапеции углы при основании равны. Для решения этой задачи учащиеся проводят прямую, параллельную боковой стороне, чтобы свести доказываемое предложение к свойству равнобед­ренного треугольника.

Но перенос части фигуры, искусственно отделенной от других элементов, для учащихся более сложен, чем пере­нос всей фигуры. Поэтому можно было бы начинать с ре­шения задачи, требующей переноса окружности. В этих задачах очень простое построение, так как фактически нужно перемещать в заданном направлении на данное расстояние лишь одну точку – центр окружности. Но при таком решении учащиеся не видят, как перемещаются точки окружности, ибо допустимо вращение окружности около центра, а это может привести к неправильному пониманию параллельного переноса. Например, в изве­стном пособии И. И. Александрова первым примером на метол параллельного переноса является задача: «Между двумя окружностями провести отрезок ХУ, делящимся пополам в данной точке А». Приведенное там решение показывает, что вместо параллельного переноса окруж­ности фактически выполнено отражение от точки А, ко­торое можно в данном случае рассматривать как про­изведение параллельного переноса и поворота окруж­ности вокруг своего центра на 180°.

Таким образом, при решении задач па построение мы применяем метод параллельного переноса, сущность ко­торого состоит вследующем: при анализе какую-нибудь фигуру подвергаем параллельному переносу на некото­рое расстояние в определенном направлении, в результа­те чего получаем вспомогательную фигуру, построение которой или очевидно, или не представляет затруднений. После этого производим обратный перенос и получаем искомую фигуру. Здесь же разъясняем, что параллель­ный перенос фигуры на некоторое расстояние означает, что все ее точки смещаются на одинаковое расстояние в определенном направлении. Следовательно, для опре­деления параллельного переноса нужно знать направ­ление и величину переноса.

Параллельным перенос можно задать вектором переноса, которым одновременно определял бы и направле­ние и интервал данного переноса, но понятие вектора для семиклассников неизвестно, поэтому мы вынуждены выделять отдельно направление и величину переноса. В дальнейшем при решении всех задач па построение методом параллельного переноса требуем от учащихся указывать как направление переноса, так и расстояние, на которое перемещается каждая точка фигуры.

Метод подобия.

1. Понятие о подобии фигур в курсе геометрии VIII класса обычно иллюстрируется многочисленными примерами подобных фигур, встречающихся в быту, внауке и технике. Используется и имеющийся у учащихся опыт применения подобия при изготовлении планов и карт на уроках географии; при проведении мензульной съемки, если она была проведена до изучения этой темы; при выполнении рабочих чертежей на уроках черчения; при разметке деталей в школьных мастерских по черте­жам, выполненным в некотором масштабе.

Для лучшего усвоения метода подобия при изучении теоретического материала необходимо проводить подго­товительную работу, в частности, разъяснять, хотя бы в простейших случаях (треугольники, параллелограм­мы), условия, определяющие форму фигуры с точностью до подобия. Так как учащиеся должны уметь выполнять построения вспомогательных фигур, подобных искомым, то нужно повторить изученные ранее методы и приемы геометрических построений, в особенности, метод геомет­рических мест, что можно сделать при изучении пропор­циональности отрезков в связи с новым материалом.

Учащиеся, повторив материал, относящийся к методу геометрических мест, легче воспринимают метод подо­бия. При решении задач методом подобия, как и при ре­шении задач методом геометрических мест, отбрасываем одно из условий, в результате чего задача становится неопределенной. Ее решением при применении метода геометрических мест является бесконечное множество точек, удовлетворяющих оставшимся условиям, а в слу­чае метода подобия получаем бесконечное множество фигур, объединенных одним свойством; все они подобны искомой фигуре. Взяв одну из них, мы с помощью по­добного преобразования, учитывая ранее отброшенное условие, получаем искомую фигуру. Эта аналогия помо­гает лучше усвоить метод подобия.

2. При изучении понятия «центр подобия» и при построении многоугольника, подобного данному, разъясняем уча­щимся, что соответственные точки всегда лежат на одной прямой, проходящей через центр подобия, а прямая, не проходящая через центр подобия, преобразуется в парал­лельную ей прямую. После того как учащиеся ознакомят­ся с построением многоугольника, подобного данному, разбираем сущность метода подобия, решая несложную задачу, в которой были бы ярко выражены характерные признаки этого метода. Например: «Построить треуголь­ник, знай два его угла А и С и высоту hb».

Эту задачу можно решить различными способами, например методом параллельного переноса или методом геометрических мест. Разобрав предлагаемые учащи­мися решения и повторив сущ­ность применяемых методов, указываем  на возможность ре­шения ещеодним способом: с применением подобия фигур.

Если не учитывать высоту искомого треугольника, то по двум данным углам мы можем построить бесконечное множество треугольников, но все они будут                     подобны искомому. Построим один из них, например треуголь­ник А1В1С1 (рис. 50).

Рис. 50

Чтобы выяснить, будет ли он искомым, проведем высоту BlD 1 и сравним ее с данной высотой. В общем случае полученная высота не будет равна данной. Если, например, BlD 1 меньше данной высоты в два раза, значит, и стороны треугольника нужно увеличить в два раза, ибо сходственные высоты в подобных треугольниках относятся как сходственные стороны. Если высота BlD 1 больше данной в несколько раз, тогда нужно во столько же раз уменьшить и стороны треугольника. Следовательно, треугольник А1В1С1 нужно подобно преобразовать так, что­бы высота была равна данному отрезку hb, для чего до­статочно определить коэффициент подобия и выбрать центр подобия. Коэффициент подобия равен отношению данной высоты к настроенной высоте BlD 1, то есть . За центр подобия выберем, например, точку B 1, тогда очень легко построить точку, соответствующую точке D 1, для чего достаточно отложить отрезок B 1 D = h в. Проведя пря­мую СА || С1А1, получим искомый треугольник АВ1С, который действительно удовлетворяет всем условиям задачи.

Построения, выполняемые с применением транспор­тира и треугольника, просты, доказательство и исследо­вание элементарны, и все внимание учащихся концен­трируется на уяснении сущности нового для них способа решения задач на построение.

Повторяем решение задачи: не учитывая высоты, по данным углам построили треугольник, подобный иско­мому; учитывая затем заданную высоту, подобно пре­образовали построенный треугольник в искомый. Такой способ решения задачи называется методом подобия. Этим методом можно решать лишь такие задачи па по­строение, условия которых можно разбить на две части, одна из которых определяет фигуру с точностью до по­добия (два утла треугольника), а вторая часть условия определяет размеры фигуры (высота).

Таким образом, метод подобия при решении задач на построение состоит в следующем; отбросив условие, определяющее размеры фигуры, по оставшимся усло­виям строим фигуру, подобную искомой; учитывая затем ранее отброшенное условие, подобно преобразовываем построенную фигуру в искомую.

Алгебраический метод.

1. Одним из важных методов, применяемых в школь­ном курсе геометрии, является алгебраический метод ре­шения задач на построение. Уже в VI-VII классах уча­щиеся неоднократно применяли алгебру при решении задач вычислительного характера и задач на доказатель­ство с целью упрощения решения. Алгебра дает очень удобный и хороший способ решения геометрических вопросов аналитическим путем.

В VI классе целесообразно рассказать, что некоторые сведения по алгебре были известны еще в глубокой древ­ности, но вопросы алгебры не отделя­лись от вопросов арифметики и геоме­трии. Позже греческие ученые, такие, как Пифагор, Евклид, которые занима­лись преимущественно геометрией, по­лучили значительные результаты и в алгебре. Но многие алгебраические то­ждества доказывались ими геометри­чески. На доске в качестве примера ил­люстрируем доказательство тождества: ( a + b )2 = a 2 + 2 ab + b 2 (рис. 56).

Рис. 56

Площадь квадрата, построенного на сумме отрезков а и b, равна сумме площадей двух квадратов со сторо­нами а и b и площадей двух прямоугольников со сторо­нами а и b. В IX в. н. э. узбекский

ученый Мухаммед-бен-Муса ал-Хорезми написал книгу «Хисаб ал-джебр вал-мукабала», появление которой явилось как бы мо­ментом оформления науки алгебры. В дальнейшем ал­гебра получила свое самостоятельное развитие и начала оказывать большую помощь при решении различных за­дач других математических дисциплин, в том числе и ге­ометрии.

2. Алгебраический метод решения задач на построе­ние рассматривается как дальнейшее расширение приме­нения алгебры к геометрии. Как известно, он состоит в следующем. Предположив задачу решенной: 1) Устанав­ливаем, какой или какие отрезки (в редких случаях углы или дуги) нужно определить, чтобы решить задачу, и обозначаем длины этих отрезков через х, y, z, ..., а длины данных отрезков – через а, b, с, …, то есть вводим обозначения. 2) Из условия задачи, пользуясь из­вестными геометрическими соотношениями между иско­мыми и данными отрезками, составляем уравнение или систему уравнений. 3) Решаем это уравне­ние или систему уравнений. 4) Исследуем получен­ные формулы для неизвестных отрезков по условию задачи. 5) Строим с помощью инструментов искомые отрезки, выраженные полученными формулами через данные отрезки. После того как неизвестные построены, выполняем построения, которые окончили бы решение, проводим доказательство и исследование.

Первые четыре этапа известны учащимся, так как при решении геометрических задач на вычисление и алгеб­раических на составление уравнений всегда выделялись такие же этапы. Это говорит о том, что задачи на по­строение, решаемые таким методом, можно рассматри­вать как обобщение задач вычислительного характера, а с другой стороны, при применении алгебраического ме­тода всякая задача на построение заменяется вначале задачей на вычисление, так что каждая задача на постро­ение, решаемая этим методом, является, по существу, и задачей на вычисление.

4. Целесообразность рассмотрения этого метода в средней школе не определяется только тем, что учащиеся ознакомятся с еще одним видом задач, для ре­шения которых применяется алгебра. Алгебраический метод решения отдельных, даже сложных задач на по­строение более доступен учащимся, ибо достаточно по­лучить соответствующую формулу для определения иско­мой величины, чтобы стало ясным все решение задачи.

Алгебраический метод позволяет легко установить условия возможности решения задачи, а также наличие определенного числа решений при тех или иных значе­ниях и положениях данных.

5. Однако в средней школе не следует чрезмер­но увлекаться этим методом за счет других важных раз­делов. Нужно решать доступные и интересные для учащихся задачи.


Поделиться:



Последнее изменение этой страницы: 2019-10-03; Просмотров: 272; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.019 с.)
Главная | Случайная страница | Обратная связь