Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


О сферической геометрии в малом



Пусть линейные размеры а, b, с сферического треугольника малы по сравнению с радиусом сферы R. Очевидно, эти условия можно осуществить за счет малости указанных линейных размеров или за счет выбора достаточно большого значения R. Из формулы, выражающей теорему косинусов, следует

 

 

Учитывая в этом равенстве члены до второго порядка малости включительно, получим теорему косинусов евклидовой геометрии:

 

 (1.14)

 

В случае прямоугольного сферического треугольника с углом имеем cos A =0 и формула (1.12) в пределе приводит к соотношению

 

,

 

составляющему теорему Пифагора в геометрии Евклида. Это равенство следует также из (1.14) при .

Так как при малых размерах приведенных сторон их синусы в первом приближении пропорциональны аргументам, то из (1.13) следуют две связи

 

,

 

выражающие теорему синусов в евклидовой геометрии.

Следовательно, формулы сферической геометрии для фигур с малыми линейными размерами по сравнению с радиусом сферы совпадают с соответствующими формулами евклидовой геометрии. Аналогичный результат получим ниже при рассмотрении формул геометрии Лобачевского.


2.2 Эллиптическая геометрия на плоскости

 

Были показаны простейшие факты сферической геометрии, в которой всякие две прямые пересекаются в двух диаметрально противоположных точках. Для того, чтобы освободиться от указанного недостатка и прийти к новой геометрии, в которой прямые имели бы не более одной общей точки, условимся считать всякую пару диаметрально противоположных точек сферы за одну точку. Полученную новую поверхность после такого отождествления пар точек сферы будем называть эллиптической плоскостью и обозначать символом S 2.

Ясно, что получим ту же плоскость, если будем строить фактормножество множества векторов евклидова пространства отношению эквивалентности в которой    тогда и только тогда, когда векторы  и  непропорциональны.

Прямые эллиптической плоскости получаются из больших кругов в результате указанного отождествления пар точек и будут по-прежнему замкнутыми линиями. Но построенная плоскость S 2 стала принципиально новым объектом математического исследования.

Оставаясь замкнутой поверхностью, она утратила свойство двухсторонности. Эллиптическая плоскость является односторонней поверхностью, то есть, раскрашивая какую-нибудь одну сторону этой поверхности, раскрасим ее с обеих сторон. В эллиптической геометрии отсутствует понятие точки, лежащей между двумя другими, если они инцидентны прямой, так как две точки на прямой определяют два взаимно дополнительных отрезка. В этой геометрии можно установить понятие разделения двух пар точек А, В и М, N, инцидентных прямой. Пара A, B разделяет пару М, N, если точки М, N лежат в разных отрезках, определенных на данной прямой точками А и В. Можно убедиться, что пара точек A, В разделяет пару М, N тогда и только тогда, когда двойное отношение


(АВМN) = АМ/ВМ: АN/ВN

четырех точек А, В, М, N отрицательно.

Разумеется, эллиптическую плоскость можно представить себе также в виде полусферы, у которой диаметрально противоположные точки экватора считаются за одну точку. Объекты новой модели находятся в определенных сопоставлениях с объектами известной модели на сфере. Благодаря этому без обращения к аксиомам выводим, что эти две модели реализуют одну и ту же геометрию.

Проектирование из центра О евклидова пространства на плоскость, касательную к сфере в точке С, где ОС , переводит прямые эллиптической плоскости в прямые евклидовой плоскости . Если к точкам касательной плоскости присоединить несобственные точки, то построенное центральное проектирование будет взаимно однозначным отображением всех точек эллиптической плоскости на все точки расширенной евклидовой (проективной) плоскости. Не будем выписывать систему аксиом эллиптической геометрии и заметим лишь, что ее можно получить из аксиом проективной геометрии и аксиом конгруентности.

Все понятия плоскости S 2 переводятся по отображению в некоторые понятия двухмерной проективной геометрии. Сопоставление соответствующих геометрических образов полученной проективной модели характеризуется следующей таблицей:

 

«точка» точка проективной плоскости
«прямая» прямая проективной плоскости
«равенство отрезков» равенство прообразов отрезков

 

Большое достоинство проективной модели состоит в том, что точки и прямые в ней изображаются привычными для нас образами. Однако, при изучении свойств конгруентных фигур сферическая модель становится более удобной.

Заметим также, что прямые и плоскости связки О евклидова пространства определяют новую модель плоскости S 2, соответствующие геометрические образы которой представляются следующей таблицей:

 

S2 Связка прямых и плоскостей в Е3
«точка» Плоскость связки
«разделение двух пар точек» Разделение двух пар прямых одного и того же пучка прямых
«расстояние между двумя точками» Величина, пропорциональная углу, между двумя прямыми связки

 

Реализация эллиптической плоскости в виде сферы, у которой диаметрально противоположные точки отождествлены, позволяет на этой плоскости ввести координаты (х, у, z), связанные соотношением

 

x2+y2+z2=R2;

 

где R называется радиусом кривизны, а обратная величина квадрата радиуса — кривизной. В этих координатах расстояние а между двумя точками А (х1, у1, z 1) и В(х2, у2, z 2 ) определяется по формуле

 

. (2.1)

 

Отношение расстояния между точками к радиусу кривизны называется приведенным расстоянием. Две точки плоскости S 2 называются полярными, если соответствующие этим точкам прямые трехмерного евклидова пространства ортогональны. Другими словами, полярные точки характеризуются тем, что приведенное расстояние между ними равняется . Отрезок прямой, ограниченный полярно сопряженными точками, называется полупрямой. Прямая состоит из двух полупрямых и имеет длину, равную . Очевидно, геометрическое место точек, полярных данной точке А (х1, у1, z 1), образует прямую


 (2.1')

 

Эта прямая называется полярой точки A, а точка А - полюсом прямой (2.1').

Прямые, перпендикулярные прямой, пересекаются в ее полюсе. Обратно, всякая прямая, проходящая через полюс данной прямой, будет перпендикулярной к этой прямой. Отсюда следует, что через каждую точку плоскости, отличную от полюса данной прямой, можно провести единственный перпендикуляр к этой прямой. Эти свойства непосредственно вытекают из определения полюсов и поляр.

В геометрии S 2 можно построить взаимно однозначное отображение между точками и прямыми, при котором каждой точке соответствует ее полярная прямая, а каждой прямой - ее полюс. Такое отображение называется полярным отображением. В эллиптической плоскости единичной кривизны полярное отображение переводит две прямые а, b в такие точки А, В, что расстояние между этими точками равняется углу между данными прямыми. Отсюда вытекает так называемый принцип двойственности в эллиптической планиметрии: если в какой-нибудь теореме эллиптической геометрии заменить слова «точка», «прямая», «расстояние» и «угол» соответственно на слова «прямая», «точка», «угол» и «расстояние», то в результате получим также справедливое предложение в этой геометрии. Примером двойственных предложений, т. е. предложений, получающихся одно из другого, указанного правила является следующее: любые две точки определяют прямую, им инцидентную; любые две прямые определяют точку, им инцидентную.

Найдем теперь расстояния между двумя бесконечно близкими точками М (х, у, z ) и M ’ (х + d х, у + d у, z + dz ). Из формулы (2.1) следует, что

 


. (2.2)

 

Откуда с точностью до бесконечно малых второго порядка включительно имеем

 

ds =-2( xdx + ydy + zdz ).

Учитывая, что координаты точки (х + d х, у + d у, z + dz ) удовлетворяют равенству

 

(х + d х)2 +(у + d у)2+ ( z + dz )2 = R 2,

будем иметь

 

2(х d х + у d у + zdz ) + dx 2 + d у2 + dz 2 = 0.

ds 2 = dx 2 + d у2 + dz 2. (2.2')

 

Полученная формула приводит к очевидному выводу о том, что в малом геометрия эллиптической плоскости совпадает со сферической геометрией. В частности, формулы (1.12) и (1.13) выражающие соответственно теорему косинусов и синусов, справедливы и в эллиптической геометрии. Формула 2.2' показывает также, что движения эллиптической плоскости S 2 представляются вращениями и отражениями евклидова пространства E 3 вокруг начала координат. Указанные движения определяются ортогональными матрицами. Так называются матрицы, у которых сумма квадратов элементов каждого столбца равняется единице, а сумма произведений соответствующих элементов разных столбцов равняется нулю. Так как матрицы, отличающиеся знаками, индуцируют одно и то же движение в эллиптической плоскости, то группа движений последней связана.


Поделиться:



Последнее изменение этой страницы: 2019-10-03; Просмотров: 140; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.017 с.)
Главная | Случайная страница | Обратная связь