Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Псевдоевклидово трехмерное пространство



а) обобщим построения псевдоевклидовой плоскости на трехмерные пространства. Аксиомы псевдоевклидова трехмерного пространства совпадают с аксиомами Вейля псевдоевклидовой плоскости, за исключением аксиом размерности III. Теперь в аксиоме III-I речь идет о существовании трех линейно независимых векторов, а в аксиоме III, 2 - всякие четыре вектора линейно зависимы.

Скалярное произведение двух векторов ,  в псевдоевклидовом пространстве будем обозначать, как и в случае псевдоевклидовой плоскости, символом . Векторы ,  - перпендикулярны, если их скалярное произведение равно нулю.

Число  называется скалярным квадратом вектора. Длиной вектора  называется корень квадратный из скалярного квадрата этого вектора и обозначается через :

.

 

Подкоренное выражение может быть > 0, < 0, и  = 0. Длины векторов соответственно этим случаям будут вещественные, чисто мнимые и нулевые. Векторы вещественной длины называются также пространственными, векторы чисто мнимой длины — временными и векторы нулевой длины — изотропными.

В псевдоевклидовом пространстве вводится прямоугольная система координат. По определению так называется аффинная система координат, векторы которой  единичны или мнимоединичны и взаимно перпендикулярны. Будем рассматривать так называемое пространство Минковского, в котором из трех координатных векторов прямоугольной системы координат два единичные, а третий — мнимоединичный. Будем считать, что

 

 (3.12)

 

В этой системе координат скалярное произведение двух векторов и квадрат длины вектора , очевидно, вычисляются по формулам вида

 

 

И квадрат длины вектора , очевидно, вычисляются по формулам вида

 

,  (3.13)

.  (3.14)

 

За расстояние между двумя точками М( x 1, x 2, x 3 ) и N( y 1, y 2, y 3 ) по определению принимается длина вектора , т. е.

 

. (3.15)

Величиной угла между векторами  и  называется число, определенное по формуле

 


.

 

Если векторы ,  одной природы, т. е. оба пространственные или временные, то . Более того, , если для х, у выполняется неравенство Коши и , если неравенство это не выполняется. Полагая в последнем случае , получим .

б) В псевдоевклидовом пространстве существует три типа прямых в зависимости от природы ее направляющего вектора. Здесь существуют также три вида плоскостей в зависимости от природы ее нормального вектора.

в) Подробнее рассмотрим вопрос о сферах. Сферой псевдоевклидова пространства П3 называется множество точек этого пространства, отстоящих от данной точки А, называемой центром сферы, на одно и то же расстояние r. Величина r называется радиусом сферы.

Выбирая прямоугольную систему координат с началом в центре сферы, убедимся в том, что координаты х1, х2, х3 текущей точки сферы радиуса r удовлетворяют уравнению

 

. (3.17')

 

Ясно, что первые два координатных вектора прямоугольной системы здесь предполагаются единичными, а третий вектор — мнимоединичным.

В псевдоевклидовом пространстве существуют три типа сферы вещественного, чисто мнимого и нулевого радиуса.

Уравнение сферы вещественного радиуса r совпадает (3.17'), в котором величина r вещественная. Если сфера чисто мнимого радиуса r = ki, где k вещественное, то уравнение (3.17') приводится к виду

 


(3.17)

 

Если же сфера будет нулевого радиуса, то из (3.15) следует, что

 

. (3.18)

 

Уравнение (3.18) в евклидовом пространстве является уравнением конуса, а предыдущие два - уравнениями гиперболоидов.

Ясно, что конус (3, 18) состоит из асимптот сфер (3.17, 17'), имеющих центр в начале координат. Очевидно, асимптотический конус сферы совпадает с изотропным конусом ее центра. Из уравнения (3.15) следует также, что на сферах псевдоевклидова пространства имеются прямолинейные образующие - прямые целиком лежащие на сфере.

Очевидно, линией пересечения сферы с плоскостью является
окружность. Если секущая плоскость проходит через начало
Координат, то радиус окружности принимает значение, равное
радиусу сферы. Получаемые таким образом окружности сферы называются большими окружностями.

За сферическое расстояние  между двумя точками М ( ), N ( ) сферы принимаем расстояние по большой окружности, соединяющей данные точки. Очевидно, это расстояние равняется произведению радиуса сферы на значение угла, образованного радиусами векторами , . Следовательно, сферическое расстояние  определяется по формуле

 

.  (3.19)

 

Если сфера чисто мнимого радиуса r = ki, то формула (3.19) приводится к виду


.

 

Геометрия Лобачевского

Убедимся теперь, что геометрия сферы чисто мнимого радиуса в псевдоевклидовом пространстве является Двухмерной геометрией Лобачевского. Ограничиваясь лишь одной, например, верхней полой сферы, покажем, что во множестве ее точек и больших окружностей осуществляется планиметрия Лобачевского. Для простоты эти точки можно спроектировать из центра сферы на касательную к ней плоскость в точке N. Кривую пересечения касательной плоскости с изотропным конусом будем называть абсолютом.

При проектировании точки полусферы перейдут во внутренние точки круга, ограниченного абсолютом, а большие окружности - в хорды абсолюта. Очевидно, последние являются линиями пересечения плоскостей больших окружностей с внутренностью абсолюта. Инцидентность точек и прямых понимается в обычном смысле. Ясно, что в системе точек внутренности абсолюта и его хорд аксиомы 1, 1 - 3 выполняются. Аналогично аксиомы II порядка и IV непрерывности переходят в истинные предложения геометрии касательной плоскости. Что касается аксиом III группы - аксиом конгруентности, то они также переходят в истинные предложения трехмерной псевдоевклидовой геометрии. При этом считаем конгруентными те отрезки (углы), которым на сфере чисто мнимого радиуса отвечают совмещающиеся при некоторых вращениях сферы дуги больших окружностей (углы между большими окружностями).

Выясним теперь, какая выполняется аксиома параллельности: V или V’.

Предположим, что нам дана на верхней полусфере большая окружность и не лежащая на ней точка. В связке прямых и плоскостей, центр которой совпадает с центром сферы, этой большой окружности и точке отвечают соответственно плоскость и прямая a связки.

Очевидно, что через прямую а можно провести бесчисленное множество плоскостей связки, рассекающих полусферу по большим окружностям, не пересекающимися с данной большой окружностью. Таким образом в рассматриваемой модели выполняется аксиома параллельности Лобачевского. Другими словами, плоскостная геометрия Лобачевского совпадает с геометрией сферы чисто мнимого радиуса.

Эти рассуждения позволяют принять следующее общее определение n-мерных неевклидовых геометрий.

Неевклидовыми геометриями n -измерений называются геометрии, которые порождаются на n -мерных сферах, Sn вещественного или чисто мнимого радиуса в ( n +1)-мерном евклидовом соответственно псевдоевклидовом пространстве. Предполагается также» что диаметрально противоположные точки этих сфер отождествлены, т. е. такие пары точек считаются за одну точку.

Из этого определения следует, что при возрастании n число типов неевклидовых пространств также растет. Неевклидовы геометрии являются геометриями простейших римановых пространств определенной и неопределенной метрики, составляющих так называемый класс пространств постоянной ненулевой кривизны. Каждое из таких n-мерных пространств допускает совокупность движений, зависящую от n ( n +1)/2 параметров.

Очевидно, при n =2 получим эллиптическую плоскость и плоскость Лобачевского. Геометрия, этих плоскостей будет соответственно геометрией сферы евклидова пространства и геометрией сферы чисто мнимого радиуса в псевдоебклидовом пространстве.

Наша ближайшая задача — вывести основные формулы сферического треугольника (так называется треугольник на сфере, образованный тремя дугами больших окружностей). Эти формулы выражают основные математические соотношений в треугольниках геометрии Лобачевского.

а) Сначала докажем так называемую теорему косинусов. Предположим, что нам дан сферический треугольник с вершинами А( ), В ( ), С ( ), углами A, В, С и противолежащими сторонами соответственно а, b, с.

Очевидно, эти стороны связаны с радиус-векторами вершин сферического треугольника следующими равенствами

 

 (3.21)

 

Предположим далее, что касательная плоскость к сфере в точке С пересекает радиусы ОА и ОВ в точках  и . Эти числовые множители ,  радиусов векторов точек A1 и B1 определяются совсем просто, если учесть ортогональность векторов ,  и ,  Действительно,

 

 

т. е.

 

.

 

Отсюда на основании (3.21) следует, что

 

. (3.22)

 

Повторяя приведенные рассуждения для другой пары  и  ортогональных векторов, получим


. (3.23)

 

Найдем теперь скалярное произведение векторов  и . С одной стороны, имеем

 

,

 

Где

 

 

Следовательно, на основании (3.22, 3.23) имеем

 

 

Поэтому

 

.

 

С другой стороны,

 

.

 

Применяя затем (3.21), (3.22), (3.23), получим

 


 (3.25)

 

Сравнивая (3.24) и (3.25), заключаем

 

 

Или

 

. (3.26)

 

Формула (3.26) не зависит от нашего предположения о точках пересечения А1 и В1. Эта формула выражает теорему косинусов сферического треугольника сферы чисто мнимого радиуса: косинус гиперболической стороны сферического треугольника равен произведению косинусов гиперболических двух других сторон без произведения синусов гиперболических этих же сторон на косинус угла между ними.

б) Переходим теперь к выводу теоремы синусов. Вычислим для этого квадрат отношения . На основании (3.26), имеем

 

. (*)

 

Видим, что числитель правой части является симметричным выражением относительно переменных а, b, с. Нетрудно убедиться, что такой же симметричностью относительно этих переменных обладает и знаменатель. В самом деле

 

 (3.27)

 

Таким образом, квадрат искомого отношения симметричен относительно сторон а, b, с. Это означает, что заменяя обозначения сторон а, b, с и углов А, В, С в круговом порядке в (*) получим отношения , , равные . Извлекая из этих отношений квадратные корни, получим формулы

 

, (3.28)

 

выражающую теорему синусов сферического треугольника в геометрии сферы чисто мнимого радиуса: синусы гиперболических сторон сферического треугольника относятся как синусы противолежащих углов.

в) Заметим, что формулы (3.26) и (3.28) геометрии сферы чисто мнимого радиуса r = ki в псевдоевклидовом пространстве можно получить из соответствующих формул сферического треугольника в евклидовом пространстве, заменяя  на ,  на ,  на .

Применяя это правило, получим вторую теорему косинусов для сферического треугольника в случае сферы мнимого радиуса:

 


 (3.29)

 

Иначе, косинус угла сферического треугольника равен произведению синусов двух других углов на косинус гиперболической стороны между этими углами без произведения косинусов двух других углов.

Отсюда следует, что если углы одного сферического треугольника равны соответствующим углам другого сферического треугольника, то такие треугольники равны.


Поделиться:



Последнее изменение этой страницы: 2019-10-03; Просмотров: 260; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.041 с.)
Главная | Случайная страница | Обратная связь