Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Площадь треугольников в эллиптической геометрии
Пусть в эллиптической плоскости дан треугольник A ВС, обозначенной на рис. 8 номером I. Как известно, на данной плоскости порождаются еще три треугольника с теми же вершинами. Эти треугольники обозначены на рисунке номерами II, III, IV. Так как вcя эллиптическая плоскость конечна и имеет площадь, равную 2 R 2, то площадь части плоскости, ограниченной вертикальными углами А треугольника I, равняется
Аналогично, площадь частей эллиптической плоскости, ограниченных вертикальными углами В и С треугольника A ВС, равны 2 R 2 B, 2 R 2 С. С другой стороны, сумма всех трех найденных площадей составляет площадь всей эллиптической плоскости с добавленной удвоенной площадью S АВС данного треугольника АВС. В результате получаем
.
Отсюда вытекает, что
S АВС = R 2 ( A + B + C - ). (2.3)
Эта формула показывает, что площадь треугольника пропорциональна его дефекту. Можно доказать, что в геометрии Лобачевского площадь треугольника АВС определяется по формуле, аналогичной (2.3),
S АВС = k 2 ( - A - B - C ),
где k — радиус кривизны. Окружность Окружностью называется геометрическое место точек М(х, у, z ), отстоящих от данной точки А(х1, у1, z 1 ) на данное расстояние r. Точка A называется центром окружности, r - ее радиусом. К понятию окружности можно прийти другим путем, отправляясь от пучков прямых и соответствующих точек на прямых данного пучка. Эти вспомогательные понятия здесь вводятся так же, как в геометрии Лобачевского. Совокупность прямых, пересекающихся в данной точке A, называется пучком прямых первого рода. Точка А называется центром пучка. Пучком прямых второго рода называются прямые плоскости, перпендикулярные данной прямой а. Нетрудно убедиться, что эти пучки двойственны друг другу. В самом деле, поляра центра пучка прямых первого рода ортогонально пересекает все прямые пучка и рассматриваемая совокупность прямых является пучком прямых второго рода. Обратно, прямые пучка второго рода проходят через полюс оси пучка и составляют пучок прямых первого рода. Таким образом, всякий пучок прямых одновременно является пучком первого и второго рода. Предположим, что точки М и N лежат соответственно на прямых тиn данного пучка прямых. Эти точки М, N называются соответствующими, если отрезок МN образует равные односторонние углы с прямыми т и n. Простейшая кривая здесь определяется так же, как в планиметрии Лобачевского. Эта кривая по определению является множеством точек, соответствующих точке М на прямой т данного пучка. Полученная таким образом простейшая кривая одновременно является окружностью радиуса r с центром в точке А и эквидистантой с высотой r ' = R /2 — r. Можно установить, что окружность ортогонально рассекает прямые своего пучка. Из (2.1) следует, что уравнение окружности (рис.9) с центром в точке А(х1, у1, z 1 ) и радиусом r < R /2 приводится к виду:
. (2.4)
Наличие двойного знака объясняется тем, что правая часть положительна, а выражение в скобках может иметь значение разных знаков. Заметим, что множество точек, равноудаленных от двух точек A, В, состоит из двух взаимно перпендикулярных прямых, проходящих через полюс прямой, определенной данными точками. Одна из этих прямых делит пополам один отрезок АВ, а другая - дополнительный. Отсюда вытекает существование одной и только одной окружности, описанной около заданного треугольника АВС. В частности, три точки, не принадлежащие прямой, определяют на эллиптической плоскости четыре треугольника. Таким образом, через три точки А, В, С, не лежащие на одной прямой, можно провести четыре окружности, которые на сферической модели определяются следующими тройками точек: АВС, АВС', АВ'С, А'ВС, где А', В', С' обозначают точки, диаметрально противоположные соответственно к точкам А, В, С. Рассмотрим вкратце свойства пар окружностей в эллиптической плоскости. В сферической геометрии две окружности, как и в евклидовой плоскости, могут не пересекаться друг с другом, касаться или пересекаться в двух точках. В эллиптической геометрии свойства пар окружностей более многообразны. Чтобы убедиться в этом, предположим, что эллиптическая плоскость интерпретирована в виде сферы, у которой диаметрально противоположные точки отождествлены. В этом случае, окружность эллиптической плоскости представляется на такой сфере в виде двух окружностей, лежащих в параллельных и равноудаленных от центра сферы плоскостях. Обратно, две окружности, полученные от пересечения сферы симметрическими относительно ее центра плоскостями, изображают в эллиптической геометрии одну окружность. Сделанные замечания позволяют составить представление о новых случаях взаимных положений двух окружностей по сравнению с сферической или евклидовой планиметрией. 2.3 Геометрия Лобачевского в системе Вейля
О псевдоевклидовой планиметрии а) В евклидовой плоскости, как известно, формула квадрата расстояния между двумя точками М(х1, х2) и N(у1, у2) в декартовой, прямоугольной системе координат представляется в виде
d ( M, N )2=( y 1 - x 1 )2+( y 2 - x 2 )2. (3.1)
Угол между векторами ОМ и ОN вычисляется из соотношения
. (3.2)
Первая формула по существу выражает теорему Пифагора для прямоугольного треугольника с катетами, равными абсолютным величинам и гипотенузой М N. Вторая же формула представляет собою формулу косинуса разности углов, образованных соответственно ОМ и ON c координатным вектором . Теперь изменим формулы (3.1) и (3.2) и будем определять расстояние между указанными двумя точками и величины данных углов по формулам соответственно d ( M, N )=( y 1 - x 1 )2 - ( y 2 - x 2 )2(3.3) (3.4)
Прежние пары точек теперь будут иметь другие расстояния» а прежние углы – другие величины. Это по существу новая своеобразная двухмерная геометрия. Чтобы подчеркнуть наличие другой метрики и не путать новые расстояния и величины углов со старыми, условимся называть координатную плоскость ( x 1, x 2 ) формулами (3.3), (3.4) псевдоевклидовой плоскостью. б) Для большей аналогии с евклидовой геометрией целесообразно ввести новое скалярное произведение векторов как произведение их длин на косинус угла между ними. Ясно, что это произведение векторов отличается от обычного скалярного произведения тех же векторов, так как длины векторов (расстояние между начальной его и конечной точками) и косинус угла понимается в смысле псевдоевклидовой геометрии. Не будем далее перечислять следствий из формул (3.3), (3.4) и дадим аксиоматическое определение псевдоевклидовой геометрии. Делается это следующим образом. Вместо аксиомы IV, 3 вейлевской аксиоматики, в которой говорится о том, что скалярный квадрат вектора неотрицательный, вводится другая аксиома IV, 3' о существовании ненулевых векторов первого, второго, и третьего типов, скалярные квадраты которых соответственно положительны, отрицательны и равны нулю. Все другие аксиомы Вейля сохраняются без изменения в псевдоевклидовой геометрии. Конечно, предполагаем, что аксиомы размерности III соответствующим образом согласованы. Если речь идет о плоскости, то в аксиоме III, 1 утверждается существование двух линейно независимых векторов, а в аксиоме III, 2 утверждается, что всякие три вектора линейно зависимы. Совокупность точек называется псевдоевклидовой плоскостью, если эти точки и их упорядоченные пары (свободные векторы) удовлетворяют аксиомам групп /--///, IV, 1, 2, 3', V. Очевидно, векторы псевдоевклидовой плоскости удовлетворяют аксиомам /--///- IV - 1, 2, 3' и образуют двухмерное псевдоевклидово векторное пространство. В псевдоевклидовой геометрии аффинная часть полностью в) Скалярное произведение двух векторов , в смысле псевдоевклидовой геометрии будем обозначать символом П . Векторы , называются перпендикулярными, если их скалярное произведение равно нулю. По-прежнему число П называется скалярным квадратом вектора ; корень квадратный из П которого называется длиной вектора и обозначается через | |.Таким образом,
,
Ясно, что длина вектора будет положительной, чисто мнимой или нулевой, если соответственно скалярный квадрат П > 0, П < 0 или П =0. Векторы положительной и чисто мнимой длины называют также соответственно пространственными и временными. Ненулевые векторы, длины которых равны нулю, называются изотропными. Введем понятие прямоугольной декартовой системы координат. Прямоугольной декартовой системой координат или просто прямоугольной системой координат псевдоевклидовой плоскости называется такая аффинная система координат, векторы которой единичны или мнимоединичны и взаимно перпендикулярны. Следовательно, один из координатных векторов псевдоевклидовой плоскости, например, будет единичным, а другой - мнимоединичным. Таким образом, скалярное произведение координатных векторов прямоугольной системы координат определяются равенствами
. (3.5)
Очевидно, скалярное произведение двух векторов
и квадрат длины вектора в прямоугольной системе координат вычисляются по формулам вида
(3.6) (3.7)
За расстояние между двумя точками M (х1, х2) и N ( y 1, y 2 ) определению принимается длина вектора :
d ( M, N )2=( y 1 - x 1 ) - ( y 2 - x 2 )2. Величиной угла между векторами и называется число, определенное по формуле
(3.8)
В правой части (3.8) числитель положительный, а знаменатель при неизотропных векторах , может быть положительным и отрицательным. Если векторы , одной природы, т. е. оба множителя в знаменателе одновременно пространственные или временные, то , если же один из векторов пространственный, а другой временный, то . Нетрудно далее доказать, что числитель в (3.8) не меньше знаменателя. Действительно, если координаты векторов и будут соответственно (х1, х2) и (у1, у2) в некоторой прямоугольной системе координат, то
.
Следовательно, если векторы , одновременно будут пространственными или временными, то
. (3.9)
Полагая в этом случае , получим
. (3.10)
В псевдоевклидовой плоскости существует три типа прямых в зависимости от природы ее направляющего вектора, если направляющий вектор будет пространственным, временным или изотропным, то прямая называется соответственно пространственной, временной или изотропной. г) Перейдем теперь к определению понятия окружности. Окружностью в псевдоевклидовой плоскости называется множество ее точек, отстоящих от данной точки, называемой центром на одно и то же расстояние r; величина r называется радиусом окружности. Выбирая прямоугольную систему координат с началом в центре окружности, убедимся, что координаты текущей точки (х1, х2) данной окружности удовлетворяют уравнению
.
В этой геометрии существует три типа окружностей - окружности вещественного, чисто мнимого и нулевого радиусов. На рис. 13 окружности нулевого радиуса изображаются с точки зрения евклидовой геометрии биссектрисами координатных углов, окружности вещественного радиуса - гиперболами, пересекающими ось Ох1 и окружность чисто мнимого радиуса - гиперболами, пересекающими ось Ох2. д) В заключение рассмотрим вкратце движения в псевдоевклидовой плоскости. Движение определяется как преобразование, соответствующие точки которого имеют одни и те же координаты относительно исходной и произвольно заданной прямоугольных систем координат. Как и в евклидовой геометрии доказывается, что движение является изометрией и, обратно, всякая изометрия является движением. Изометрия определяется как преобразование, сохраняющее расстояние между двумя произвольными точками. Как и в геометрии евклидовой плоскости, движения можно разделить на собственные движения - движения с определителем = 1 и несобственные - движения с определителем = - 1. Но теперь каждую из этих совокупностей в свою очередь можно разделить на две совокупности. Чтобы убедиться в этом, отметим предварительно следующие два замечания. Во-первых, ясно, что пространственные, временные и изотропные векторы при движениях остаются соответственно пространственными, временными и изотропными. Во-вторых, при непрерывных вращениях вокруг данной точки векторы изотропного конуса отделяют в этой точке временные векторы от пространственных. Перейдем теперь к дальнейшему разделению на части движений псевдоевклидовой плоскости. Нетрудно видеть, что в формулах
(3.11)
определяющих вращение, величина не обращается в нуль. В самом деле, предположим, что в (3.11) коэффициент равняется нулю. В таком случае пространственный вектор {1, 0} при вращении (3.11), перешел бы в вектор {0, }, который является временным, что невозможно. Таким образом, при изменениях координатных векторов , вызываемых непрерывными вращениями, коэффициент будет знакопостоянным. Следовательно, все движения делятся на четыре типа в зависимости от значения определителя преобразования = 1 или = - 1 и знака > 0 или < 0. Представителями этих четырех типов будут, например, движения с матрицами:
|
Последнее изменение этой страницы: 2019-10-03; Просмотров: 225; Нарушение авторского права страницы