Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Уравнение управления. Основные задачи системы управления. Методы их решения.
Динамические системы в которых есть задержка возмущения описываются дифференциальным уравнением в чистых производных и называются системами с рассредоточенными параметрами. Нормальное уравнение состояния системы управления - равенство, связывающее входные и выходные параметры, изменяющиеся во времени и справедливо в любой момент времени. Система управления широко применяется во многих технических и биотехнических системах для выполнения операций, не осуществимых человеком в связи с необходимостью переработки большого количества информации в ограниченное время, для повышения производительности труда, качества и точности регулирования, освобождения человека от управления системами, функционирующими в условиях относительной недоступности или опасных для здоровья. Цель управления тем или иным образом связывается с изменением во времени регулируемой (управляемой) величины - выходной величины управляемого объекта. Для осуществления цели управления, с учётом особенностей управляемых объектов различной природы и специфики отдельных классов систем, организуется воздействие на управляющие органы объекта - управляющее воздействие. Оно предназначено также для компенсации эффекта внешних возмущающих воздействий, стремящихся нарушить требуемое поведение регулируемой величины. Управляющее воздействие вырабатывается устройством управления (УУ). Совокупность взаимодействующих управляющего устройства и управляемого объекта образует систему автоматического управления. Система управления широко применяется во многих технических и биотехнических системах для выполнения операций, не осуществимых человеком в связи с необходимостью переработки большого количества информации в ограниченное время, для повышения производительности труда, качества и точности регулирования, освобождения человека от управления системами, функционирующими в условиях относительной недоступности или опасных для здоровья. Цель управления тем или иным образом связывается с изменением во времени регулируемой (управляемой) величины - выходной величины управляемого объекта. Для осуществления цели управления, с учётом особенностей управляемых объектов различной природы и специфики отдельных классов систем, организуется воздействие на управляющие органы объекта - управляющее воздействие. Оно предназначено также для компенсации эффекта внешних возмущающих воздействий, стремящихся нарушить требуемое поведение регулируемой величины. Управляющее воздействие вырабатывается устройством управления (УУ). Совокупность взаимодействующих управляющего устройства и управляемого объекта образует систему автоматического управления.
Ряд Фурье Ряд Фурье - это ряд из тригонометрических функций, в который можно разложить функцию f(x), определенную на некотором сегменте (-a; a). Все разложение в ряд Фурье сводится к нахождению коэффициентов ряда, а для этого нужно уметь интегрировать тригонометрические функции.
Преобразование Фурье (символ ℱ ) — операция, сопоставляющая одной функции вещественной переменной другую функцию вещественной переменной. Эта новая функция описывает коэффициенты («амплитуды») при разложении исходной функции на элементарные составляющие — гармонические колебания с разными частотами (подобно тому, как музыкальный аккорд может быть выражен в виде суммы музыкальных звуков, которые его составляют).
Преобразование Фурье функции f вещественной переменной является интегральным и задаётся следующей формулой: Интеграл Фурье Интеграл Фурье — это представление непериодической функции f(x) в виде интеграла, равного непрерывной сумме гармоник, зависящих от частоты ω на интервале [0, ∞ ). При этом непериодическая функция f(x) имеет непрерывный спектр; частоты образующих её гармоник изменяются непрерывно. Функции A(ω ) и B(ω ) дают закон распределения амплитуд (и начальных фаз) в зависимости от частоты ω.
5.Прямое и обратное преобразование Лапласа Преобразования Лапласа играют очень важную роль при исследовании систем, описываемых дифференциальными уравнениями. С помощью прямого преобразования Лапласа можно перейти от дифференциальных уравнений к алгебраическим, решить их в алгебраической форме, а затем с помощью обратного преобразования получить искомый результат. Прямое преобразование Лапласа осуществляется по формуле: , (1) где - комплексная переменная. На функцию x(t) накладываются некоторые ограничения. Иногда для простоты пользуются символической записью выражения (1) в виде: , где L - оператор прямого преобразования Лапласа. Функция x(t) называется оригиналом, а Х(р) - изображением. Кроме прямого существует также и обратное преобразование Лапласа, определяемое по формуле: , (2) где интеграл берется на комплексной плоскости р вдоль любой прямой . Символически операцию обратного преобразования Лапласа по (2) записывают в виде: .
|
Последнее изменение этой страницы: 2019-06-19; Просмотров: 271; Нарушение авторского права страницы