Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Замена переменных в двойном интеграле.Стр 1 из 5Следующая ⇒
Двойной интеграл Рассмотрим в плоскости Оху замкнутую область D, ограниченную линией Г, являющейся замкнутой непрерывной кривой. z = l(P) = f(x, y), P= (x, y) Î D – произвольные ф-ции определенные и ограниченные на D. Диаметром области D наз. наибольшее расстояние между граничными точками. Область D разбивается на n частых областей D1…Dn конечным числом произв. кривых. Если S – площадь D, то DSi – площадь каждой частной области. Наибольший из диаметров областей обозн l. В каждой частной области Di возьмем произв. точку Pi (xi, Di) Î Di, наз. промежуточной. Если диаметр разбиения D l à 0, то число n областей Di à ¥. Вычислим зн-ие ф-ции в промежуточных точках и составим сумму: I = f(xi, Di)DSi (1), наз. интегральной суммой ф-ции. Ф-ция f(x, y) наз. интегрируемой в области D если существует конечный предел интегральной суммы. Двойным интегралом ф-ии f(x, y) по области D наз. предел интегральной суммы при l à 0. Обозн: или 2 Понятие числового Ряда и его суммы Пусть задана бесконечная последовательность чисел u1, u2, u3… Выражение u1+ u2+ u3…+ un (1) называется числовым рядом, а числа его составляющие- членами ряда. Сумма конечно числа n первых членов ряда называется n-ной частичной суммой ряда: Sn = u1+..+un Если сущ. конечный предел: , то его называют суммой ряда и говорят, что ряд сходится, если такого предела не существует, то говорят что ряд расходится и суммы не имеет. № 2 1 Условие существования двойного интеграла Необходимое, но недостаточное: Ф-ция f(x, y) интегрируема на замкнутой области D, ограничена на D. 1 достаточный признак существования: если ф-ция f(x, y) непрерывна на замкнутой, огр. области D, то она интегрируема на D. 2 достаточный признак существования: если ф-ция f(x, y) ограничена в замкнутой области D с какой-то границей и непрерывна в ней за исключением отдельных точек и гладки=х прямых в конечном числе где она может иметь разрыв, то она интегрируема на D. Геометрический и Арифметический ряды Ряд состоящий из членов бесконечной геометрической прогрессии наз. геометрическим: или а+ а× q +…+a× qn-1 a ¹ 0 первый член q – знаменатель. Сумма ряда: следовательно конечный предел последовательности частных сумм ряда зависит от величины q Возможны случаи: 1 |q|< 1 т. е. ряд схд-ся и его сумма 2 |q|> 1 и предел суммы так же равен бесконечности т. е. ряд расходится. 3 при q = 1 получается ряд: а+а+…+а… Sn = n× a ряд расходится 4 при q¹ 1 ряд имеет вид: а-а+а … (-1)n-1a Sn=0 при n четном, Sn=a при n нечетном предела частных суммы не существует. ряд расходится. Рассмотрим ряд из бесконечных членов арифметической прогрессии: u – первый член, d – разность. Сумма ряда при любых u1 и d одновременно ¹ 0 и ряд всегда расходится. №3 1 Основные св-ва 2ного интеграла 1. Двойной интеграл по области D = площади этой области. 2. Если область G содержится в Д, а ф-ция ограничена и интегрируема в Д, то она интегрируема и в G. 3. Аддитивное св-во. Если область Д при помощи кривой г разбивают на 2 области Д1 и Д2, не имеющих общих внутренних точек, то: 4. константы выносятся за знак интеграла, а сумму в ф-ции можно представить в виде суммы интегралов: 5. Если ф-ции f и g интегрируемы в Д, то их произведение также интегрируемо в Д. Если g(x, y) ¹ 0 то и f/g интегрируема в Д. 6. Если f(x, y) и g(x, y) интегрируемы в Д и всюду в этой области f(x, y) < = g(x, y), то: В частности: g(x, y) > =0 то и 7. Оценка абсолютной величины интеграла: если f(x, y) интегрируема в Д, то и |f(x, y)| интегрир. в Д причем обратное утверждение неверно, итз интегрируемости |f| не следует интегрируемость f. 8. Теорема о среднем значении. Если ф-ция f(x, y) интегр. в Д., то в этой области найдется такая точка (x, h) Î Д, что: (2), где S – площадь фигуры Д. Значение f(x, h) опред по ф-ле (2) наз. средним значением ф-ции f по области Д. 2 С-ва сходящихся рядов Пусть даны два ряда: u1+u2+…un = (1) и v1+v2+…vn = (2) Произведением ряда (1) на число l Î R наз ряд: lu1+lu2+…lun = (3) Суммой рядов (1) и (2) наз ряд: (u1+v1)+(u2+v2)+…(un+vn) = (для разности там только - появица) Т1 Об общем множителе Если ряд (1) сходится и его сумма = S, то для любого числа l ряд =l × тоже сходится и его сумма S’ = S× l Если ряд (1) расходится и l ¹ 0, то и ряд тоже расходится. Т. е. общий множитель не влияет на расходимости ряда. Т2 Если ряды (1) и (2) сходятся, а их суммы = соотв S и S’, то и ряд: тоже сходится и если s его сумма, то s = S+S’. Т. е. сходящиеся ряды можно почленно складывать и вычитать. Если ряд (1) сходится, а ряд (2) расходится, то их сумма(или разность) тоже расходится. А вот если оба ряда расходятся. то ихняя сумма (или разность)может как расходится (если un=vn) так и сходиться (если un=¹ vn) Для ряда (1) ряд называется n – ным остатком ряда. Если нный остаток ряда сходится, то его сумму будем обозначать: rn = Т3 Если ряд сходится, то и любой его остаток сходится, если какой либо остаток ряда сходится, то сходится и сам ряд. Причем полная сумма = частичная сумма ряда Sn + rn Изменение, а также отбрасывание или добавление конечного числа членов не влияет на сходимость (расходимость) ряда.
№4 Сведение Ного интеграла к повторному Пусть у1(х), у2(х) непрерывны на отрезке [a, b], у1(х)< = у2(х) на всем отрезке. D={x, y}: a< =x< =b; y1(x)< =y< =y2(x) Отрезок [a, b] – проекция Д на ось ох. Для такой области людбая прямая, параллельная оу и проходящая через внутреннюю точку области Д пересекает границу области не более чем в 2 точках. Такая область наз. правильной в направлении оси оу. Если фция f(x, y) задана на Д и при каждом х Î [a, b] непрерывна на у, на отрезке, [y1(x), y2(x)], то фц-ия F(x) = , наз. интегралом, зависящим от параметра I, а интеграл: , наз повторным интегралом от ф-ции f(x, y) на области Д. Итак, повторный интеграл вычисляется путем последовательного вычисления обычных определенных интегралов сначала по одной., а затем по другой переменной. Необходимый Признак сходимости рядов Если ряд сходится, то предел его общего члена равен нулю: Док-во: Sn=u1+u2+…+un Sn-1\u1+u2+…+un-1 un=Sn-Sn-1, поэтому: Сей признак является только необходимым, но не является достаточным., т. е. если предел общегоь члена и равен нулю совершенно необязательно чтобы ряд при этом сходился. Следовательно, вот сие условие при его невыполнении является зато достаточным условием расходимости ряда. №5 Интегральный признак Двойной интеграл В полярных координатах Переход к полярным координатам частный случай замены переменных. Луч, проходящий из произв точки О имеет на плоскости полярные координаты A(r, j) где r = |ОA| расстояние от О до А полярный радиус. j = угол между векторами ОА и ОР – полярный угол отсчитываемой от полярной оси против часовой стрелки. всегда 0< =r< =+¥, 0< =j < =2p. Зависимость между прямоугольными и полярными координатами: x = r× cosj, y = r× sinj. Якобиан преобразования будет равен: И формула при переходе примет вид: 2 Признаки сравнения Т(Признаки сравнения) Пущай и ряды с неотрицательными членами и для любого n выполняется нер-во: un< =vn (1)тогда 1 Если ряд vn сходится, то сходится и ряд un 2 если ряд un расходится, то расходится и ряд vn. Т. е. говоря простыми русскими словами для простых русских людей (ну для дураков вроде тебя): Из сходимости ряда с большими членами следует сходимость ряда с меньшими, а из расходимости ряда с меньшими членами следует расходимости ряда с большими и не наоборот!!! Причем можно требовать, чтобы неравенство (1) выполнялось не для всех номеров n, а начиная с некоторого n0, т. е. для некоторых номеров меньших n0 неравенство (1) может и не выполняться. При применении сего признака сравнения удобно в качестве ряда сравнения брать ряд Дирихле или геометрический ряд, с которыми и так уже все ясно. Т3 Засекреченная Если сущ вышеописанные неотр. ряды, то если сущ предел: (0< k< +¥ ) тада оба эти ряда сходятся. №7 Вычисление Площади плоской области С помощью 2ного интеграла Если Д правильная в направлении оу a< =x< =b, y1(x)< =y< =y2(x), то Если Д огр линиями в полярных координатах, то 2 Признаки Даламбера и Коши Т(Признак Далембера) Пущай для ряда un с положит членами существует предел: , то 1 Если k< 1, то ряд сходится 2 Если k> 1 ряд расходится Т(Признак Коши) Пусть для того же самого ряда (т. е. положительного) существует предел: , тогда 1 Если k< 1, то ряд сходится 2 Если k> 1 ряд расходится А вот если эти все пределы по Коши и дедушке Даламберу равны 1, то о сходимости или расходимости ряда ничего сказать низзя. Вот низзя и все тут. Вот. №8 Вычисление объема С помощью 2ного интеграла Рассматривая в пространстве тело Р, огр снизу плоскостью оху, сверху z = f(x, y), кот проектируется в Д, сбоку границей области Д, называемое криволинейным цилиндром. Объем этого тела вычисляют по формуле: если f(x, y)< =0 в Д тор тело находится под плоскостью оху. Его объем равен объему цилиндрического тела. огр сверху ф-цией: z = |f(x, y)|> =0. тогда если в Д ф-ция меняет знак, то область разбивается на 2. Область Д1, f(x, y)> =0; Д2, f(x, y)< =0, тогда: 2 Знакочередующиеся ряды. Признак Лейбница. Ряд называется знакочередующимся если каждая пара соседних членов имеет разные знаки (один ♀, другой ♂ ), если считать каждый член сего ряда положительным то его можно записать в виде: Т (Признак Лейбница) Если для знакочередующегося ряды выполняются условия: 1) u1> =u2> =u3…> =un> =un+1… 2) то ряд сходится, а его сумма и остаток rn удовлетворяют неравенствам: 0< =S< =un и |rn|< =un+1 Ряд удовлетворяющий условиям теоремы наз. рядом Лейбница. Если условие чередования знаков выполняется не с первого члена, а с какого-нибудь исчо, то при существовании равного 0 предела ряд будет также сходится. №9 Вычисление Площади поверхности Абсолютная и условная Сходимость рядов. Ряд называют знакопеременным, если его членами являются действительные числа, а знаки его членов могут меняться как кому в голову взбредет. Пусть дан ряд: u1+u2…+un= (1), где un – может быть как положительным, так и отрицательным. Рассмотрим ряд состоящий из абсолютных значений этого ряда: |u1|+|u2|…+|un|= (2), Если сходится ряд (2), то ряд (1) называют абсолютно сходящимся, а вот если ряд (1) сходится, а ряд (2) расходится. то ряд (1) наз сходящимся условно. Т. Признак абсолютной сходимости: Если знакочередующийся ряд сходится условно. то он и просто так сходится, при этом: < = Доквы: т. к. 0< =|un|+un< =2|un|, то по признаку сравнения сходится ряд |un|+un, тогда сходится ряд: (|un|+un)-|un|=un. Далее, т. к. по св-ву абсолютной величины |Sn|=|u1+u2+…+un|< =|un| " n Î N, то переходя к пределу получим: < = Т2 Если ряд (1) абсолютно сходится, то и любой ряд составленный из тех же членов, но в любом другом порядке тоже абсолютно сходится и его сумма равна сумме ряда un – Sn. А вот с условно сходящимися рядами все гораздо запущенней. Т(Римана) Если знакопеременный ряд с действительными членами сходится условно, то каким бы ни было дейст. число S можно так переставить члены ряда, что его сумма станет равна S, т. е. сумма неабсолютно сходящегося ряда зависит от порядка слагаемых №10 Вычисление массы, Координат центра масс, Моментов инерции плоской Материальной пластины с Помощью 2ного интеграла. Масса плоской пластины вычисляется по ф-ле: , где r(х, у) – поверхностная плотность. Координаты центра масс выч по ф-ле: если пластина однородная, т. е. r(х, у) – const, то ф-лы упрощаются:
Статические моменты плоскостей фигуры Д относит осей оу и ох
Момент инерции плоской пластины относительно осей ох, оу, начала координат:
J0=Jx+Jy если пластина однородная, то ро вышвыривается на фиг и считается равной 1. 2 Сходимость функциональных последовательностей и рядов Функциональной последовательностью заданной на множестве Е, наз. последовательность ф-ций {fn(x)} (1)определенных на Е и принимающих числовые действительные значения. Пусть задана поледовательность числовых ф-ций {un(x)} Формальнг написанную сумму: (2) называют функциональным рядом на множестве Е, а ф-цию un(x) – его членами. Аналогично случаю числовых рядов сумма: Sn(x) = u1(x)+u2(x)+…+un(x) называется частичной суммой ряда n порядка, а ряд: un+1? un+2… - его n-ным остатком. при каждом фиксированном х = х0 Î Е получим из (1) числовую последовательность {fn(x0)}, а из (2) – числовой ряд , которые могут сходится или расходится. если кто-нибудь из оных сходится, то сходится и функциональная посл (1) в т х0, и сия точка наз. точкой сходимости. Если посл(1) сход на м-ж Е, то ф-ция f, определенная при " x Î E f(x) = назывется пределом посл (1), если ряд(2) сходится на м-ж Е, то ф-ция S(x) определенная при " x Î Е равенством S(x)= называется суммой ряда (2). Остаток ряда сходится только когда на этом же м-ж сходится сам ряд., если обозначить сумму остатка ряда через rn(ч), то S(x) = Sn(x)+rn(x) Если ряд (2) сходится абсолютно, то он наз абсолютно сходящимся на м-ж Е. Множество всех точек сходимости функционального ряда наз областью сходимости. Для определения области сходимости можно использовать признак Даламбера и Коши. С ихнею помашшю ф-ц ряд исследуется на абсолютную сходимость Например, если существует и , то ряд (2) абсолютно сходится при k(x)< 1 и расходится при k(x)> 1. №11 Тройные интегралы Пусть на некоторой ограниченной замкнутой области V трехмерного пространства задана ограниченная ф-ция f (x, y, z). Разобьем область V на n произвольных частичных областей, не имеющих общих внутренних точек, с объемами DV1… DVn В каждой частичной области возбмем произв. точку М с кооорд Mi(xi, hi, ci) составим сумму: f(xi, hi, ci)× DVi, кот наз интегральной суммой для ф-ции f(x, y, z). Обозначим за l максимальный диаметр частичной области. Если интегральная сумма при l à 0 имеет конечный предел, то сей предел и называется тройным интегралом от ф-ции f(x, y, z) по области V И обозначается: 2 Равномерная сходимость функциональных Признак Вейерштрасса. Ф-циональную последовательность {fn)x)} x Î E наз. равномерно сходящейся ф-цией f на м-ж Е, если для Î e > 0, сущ номер N, такой, что для " т х Î E и " n > N выполняется ¹ -во: |fn(x)-f(x)|< e. Если м-ж {fn)x)} равномерно сходится на м-ж Е, то она и просто сходится в ф-ции f на сем м-ж. тогда пишут: fn à f. наз. равномерно сходящимся рядом, если на м-ж Е равномерно сходится последовательность его частичной суммы., т. ен. равномерная сходимость ряда означает: Sn(x) à f(x) Не всякий сходящийся ряд является равномерно сходящимся, но всякий равномерно сходящийся – есть сходящийся (не, вот это наверное лет 500 выдумывали.) Т. (Признак Вейерштрасса равномерной сходимости ряда) Если числовой ряд: (7), где a > =0 сходится и для " x Î E и " n = 1, 2… если выполняется нер-во |un(x)|< =an(8), ряд (9) наз абсолютно и равномерно сходящимся на м-ж Е. Док-вы: Абсолютная сходимость в каждой т. х следует из неравенства (8) и сходимости ряда (7). Пусть S(x) – сумма ряда (9), а Sn(x) – его частичная сумма. Зафиксируем произвольное e > 0 В силу сходимости ряда (7) сущ. номера N, " n > N и вып. нерво Следовательно: |S(x)-Sn(x)| = Это означает, что Sn(x) à S(x) что означает равномерную сходимость ряда.. №12 Замена переменных В тройном интеграле. Если ограниченная замкнутая область пространства V = f(x, y, z) взаимно однозначно отображается на область V’ пространства = (u, v, w) Если непрерывно дифференцируемы функции: x=x(u, v, w), y=y(u, v, w), z=z(u, v, w) и существует якобиан то справедлива формула: При переходе к цилиндрическим координатам, с вязанными с x, y, z формулами: x=rcosj, y=rsinj, z=z (0< =r< =+¥, 0< =j < = 2p, -¥ < =z< =+¥ ) Якобиан преобразования: И поэтому в цилиндрических координатах переход осуществляется так: При переходе к сферическим координатам: r? j q, связанными с z, y, z формулами x=rsinq× cosj, y=r sinqsinj, z=rcosq. (0< =r< =+¥, 0< =j < = 2p, 0< =q < =2p) Якобиан преобразования: Т. е. |J|=r2× sinq. Итак, в сферических координатах сие будет: 2 Свойства равномерно Сходящихся рядов Т1 Если ф-ция un(x), где х Î Е непрерывна в т. х0 Î E и ряд (1) равномерно сходится на Е, то его сумма S(x) = также непрерывна в т. х0. Т2 (Об поюленном интегрировании ряда) Пусть сущ. ф-ция un(x) Î R и непрерывная на отр. [a, b] и ряд (3) равномерно сходится на этом отрезке, тогда какова бы ни была т. х0 Î [a, b] (4) тоже равномерно сходится на [a, b]. В частности: при x0 = a, х = b: т. е. ряд (3) можно почленно интегрировать. Т3 (о почленном дифференцировании ряда) Пусть сущ. ф-ция un(x) Î R и непрерывная на отр. [a, b] и ряд её производных (6) равномерно сходящийся на отр [a, b] тогда, если ряд сходится хотя бы в одной точке x0 Î [a, b] то он сходится равномерно на всем отрезке [a, b], его сумма S(x) = является непрерывно дифференцируемой ф-цией и S’(x)= (9) В силу ф-л ы (8) последнее равенство можно записать: ( )’ = So ряд (7) можно почленно дифференцировать №13 Приложения Тройных интегралов Объем тела Масса тела: , где r(М) = r(x, y, z) - плотность. Моменты инерции тела относительно осей координат: Момент инерции относительно начала координат: Координаты центра масс:
m – масса. Интегралы, стоящие в числителях выражают статические моменты тела: Myz, Mxz, Mxy относит коорд плоскостей oyz, oxz, oxy. Если тело однородное: r(М) = const, то из формул она убирается и оне упрощаются как в 2ных интегралах. Определение криволинейных Интегралов 1 и 2 рода Криволинейный интеграл по длине дуги (1 рода) Пусть ф-ция f(x, y) определена и непрерывна в точках дуги АВ гладкой кривой К. Произвольно разобъем дугу на n элементарных дуг точками t0..tn пусть Dlk длина k частной дуги. Возьмем на каждой элементарной дуге произвольную точку N(xk, hk) и умножив сию точку на соотв. длину дуги составим три интегральную суммы: d1 = f(xk, hk)× Dlk d2 = Р(xk, hk)× Dхk d3 = Q(xk, hk)× Dyk, где Dхk = xk-xk-1, Dyk = yk-yk-1 Криволинейным интегралом 1 рода по длине дуги будет называться предел интегральной суммы d1 при условии, что max(Dlk) à 0 Если предел интегральной суммы d2 или d3 при l à 0, то этот предел наз. криволинейным интегралом 2 рода, функции P(x, y) или Q(x, y) по кривой l = AB и обозначается: или сумму: + принято называть общим криволинейным интегралом 2 рода и обозначать символом: в этом случае ф-ции f(x, y), P(x, y), Q(x, y) – называются интегрируемыми вдоль кривой l = AB. Сама кривая l наз контуром или путем интегрирования А – начальной, В – конечной точками интегрирования, dl – дифференциал длины дуги, поэтому криволинейный интеграл 1 рода наз. криволинейным интегралом по дуге кривой, а второго рода – по функции.. Из определения криволинейных интегралов следует, что интегралы 1 рода не зависят от того в каком направлении от А и В или от В и А пробегается кривая l. Криволинейный интеграл 1 рода по АВ: , для криволинейных интегралов 2 рода изменение направления пробегания кривой ведет к изменению знака: В случае, когда l – замкнутая кривая т. е. т. В совпадает с т. А, то из двух возможных направлений обхода замкнутого контура l называют положительным то направление, при котором область лежащая внутри контура остается слева по отношению к??? совершающей обход, т. е. направление движения против часовой стрелки. Противоположное направление обхода наз – отрицательным. Криволинейный интеграл АВ по замкнутому контуру l пробегаемому в положит направлении будем обозначать символом: Для пространственной кривой аналогично вводятся 1 интеграл 1 рода: и три интеграла 2 рода: сумму трех последних интегралов наз. общим криволинейным интегралом 2 рода. Условия Существования и вычисления Криволинейных интегралов. Кривая L наз. гладкой, если ф-ции j(t), y(t) из определяющих её параметрических уравнений: (1) имеет на отрезке [a, b] непрерывные производные: j’(t), y’(t).Точки кривой L наз особыми точками, если они соответствуют значению параметра t Î [a, b] для которых (j’(t))2+(y’(t))2 = 0 т. е. обе производные обращаются в 0. Те точки для которых сие условие не выполняется наз. обычными (ВАУ! ). Если кривая L=AB задана ф-лами (1), является гладкой и нет имеет обычных точек, а ф-ции f(x, y), P(x, y), Q(x, y) непрерывны вдоль этой кривой, то криволинейные интегралы всех видов существуют (можно даже ихние формулы нарисовать для наглядности) и могут быть вычислены по следующим формулам сводящим эти интегралы к обычным: Отседова жа вытекаает штаа: В частности, если кривая АВ задана уравнением y = y(x), a< =x< =b, где у(х) непрерывно дифференцируемая ф-ция, то принимая х за параметр t получим:
ну и сумма там тожжа упростица. ну и наоборот тожжа так будит, если х = х(у) Если АВ задана в криволинейных координатах a < = j < = b где ф-ция r(j) непрерывно дифференцируема на отрезке [a, b] то имеет место частный случай, где в качестве параметра выступает полярный угол j. x = r(j)× cos(j), y= r(j)× sin(j). и у второго рода так же. Прямая L наз кусочно-гладкой, если она непрерывна и распадается на конечное число не имеющих общих внутренних точек кусков, каждый из которых представляет собой гладкую кривую. В этом случает криволинейные интегралы по этой кривое определяются как сумма криволинейных интегралов по гладким кривым составляющим сию кусочно-гладкую кривую. все выше сказанное справедливо и для пространственной кривой (с буквой зю). Свойства степенных рядов Т1 Если степенной ряд (1) имеет радиус сходимости R> 0, то на любом отрезке действительной оси вида |x|< =r, 0< r< R (2) (или [-r, r]) целиком лежащем внутри интервала сходимости ряд (1) сходится равномерно. Для ряда отрезком равномерной сходимости будет отрезок |x-x0|< =r или ([x0-r, x0+r]) Т2 На любом отрезке |x-x0|< =r сумма степенного ряда является непрерывной ф-цией. Т3 Радиусы сходимости R, R1, R2 соответственно рядов× (5), (6), (7) равны: R1=R2=R3. Итак ряды (6) и (7) полученные с помощью формального интегрирования и дифференцирования имеют те же радиусы сходимости, что и исходный ряд. Пусть ф-ция f(x) является суммой степенного ряда (9) Т4 Дифференцирование степенного ряда Если ф-ция f(x) на интервале (x0-R, x0+R) является суммой ряда (9), то она дифференцируема на этом интервале и её производная f’(x) находится дифференцированием ряда (9): f’(x)= При этом радиус сходимости полученного ряда = R Т5 О интегрировании степенного ряда Степенной ряд (9) можно почленно интегрировать на любом отрезке целиком принадлежащем интервалу сходимости при этом полученный степенной ряд имеет тот же радиус сходимости что и исходный ряд. Последовательное применение Т4 приводит к утверждению, что ф-ция f имеет на интервале сходимости производные всех порядков, которые могут быть найдены из ряда (9) почленным дифференцированием. При интегрировании и дифференцировании степенного ряда внутри интервала сходимости радиус сходимости R не меняется, однако на концах интервала может изменяться. №16 Свойства Криволинейных интегралов Св-ва криволинейных интегралов 1 рода: 1.Константа выносится за знак интеграла, а интеграл суммы можно представить в виде суммы интегралов: 2. Если дуга АВ состоит из двух дуг Ас и Св не имеющих общих внутренних точек и если для ф-ции f(x, y) сущ криволинейный интеграл по АВ, то для для сей ф-ции сущ криволинейные интегралы по АС и по ВС причем: 3. 4.Ф-ла среднего значения если ф-ция f(x, y) непрерывна вдоль кривой АВ, то на этой кривой найдется точка М, такая, что: , где l – длина кривой Криволинейный интеграл 2 рода обладает всеми свойствами интегралов 1 рода, и исчо при изменении направления прохождения кривой он меняет знак..И вапще все сказанное выше справедливо и для пространственной кривой (этта та которая с буквой зю) 2 Разложение ф-ций в степенные ряды. Ряды Тейлора и Маклорена. Пусть (1) сходится при |x-x0|< R а его сумма является ф-лой f(x)= (2) В этом случае говорят, что ф-ция f(x) разложена в степенной ряд. (1). Т1 Если ф-ция f распространяется в некоторой окрестности т. х0 f(x)= , то и справедлива формула: (15) Если в некоторой окрестности заданной точки ф-ция распадается в степенной ряд, то это разложение единственно. Пусть дествит. ф-ция f определена в некоторой окрестности т. х0 и имеет в этой точке производные всех порядков, тогда ряд: (6) наз рядом Тейлора ф-ции f в т, х0 При х0=0 ряд Тейлора принимает вид: (6’) и называется ряд Маклорена. Ряд Тейлора может: 1 Расходится всюду, кроме х=х0 2 Сходится, но не к исходной ф-ции f(x), а к какой-нибудь другой. 3 Сходится к исходной ф-ции f(x) Бесконечная дифференцируемость ф-ции f(x) в какой-то т. х0 является необходимым условием разложимости ф-ции в ряд Тейлора, но не является достаточным. Для введения дополнительных условий треб. ф-ла Тейлора. Т2 Если ф-ция f(x) (n+1) раз дифференцируема на интервале (x0-h, x0+h) h> 0, то для всех x Î (x0-h, x0+h) имеет место ф-ла Тейлора: где остаток rn(x) можно записать: (8) (9) Формула (8) наз остаточным членом ф-лы Тейлора в интегральной форме. Ф-ла (9) – формулой Лагранжа. Преобразуя ф-лу Тейлора при х0 = 0 получаем ф-лу Маклорена. Т3 Если ф-ция f(x) имеет в окрестности т х0 производные любого порядка и все они ограниченны одним и тем же числом С, т е " x Î U(x0) |f(n)(x)|< =C, то ряд Тейлора этой ф-ции сходится в ф-ции f(x) для всех х из этой окрестности. №17 Формула Грина Сия очень полезная в сельском хозяйстве формула устанавливает связь между криволинейными и двойными интегралами. Пусть имеется некоторая правильная замкнутая область Д, ограниченная контуром L и пущая ф-ции P(x, y) и Q(x, y) непрерывны вместе со своими частными производными: в данной области. тогда имеет место ф-ла: И вот вся эта фигулина и есть формула Грина. Контур L определяющий область д может быть задан показательными уравнениями х = х1(у), х=х2(у) с< =y< =d x1(y)< =x2(y) или y = y1(x), y=y2(x) a< =x< =b y1(x)< =y2(x). Рассмотрим область Д ограниченную неравенствами: a< =x< =b и y1(x)< =y2(x). и преобразуем двойной интеграл к криволинейным для чего сведем его к повторному и ф-ле Невтона-Лыебница выполним интегрирование по у и получим: каждый из 2 определенных интегралов в правой части последнего равенства = криволинейному интегралу 2 рода взятому по соответствующей кривой а именно: Итак двойной интеграл: Формула Грина остается справедливой для всякой замкнутой области Д, которую можно разбить проведением дополнительных линий на конечной число правильных замкнутых областей. 2 Разложение элементарных ф-ций в ряд Тейлора (Маклорена) 1Разложение ф-ции ех ряд Маклорена. радиус сходимости: R=¥ следовательно ряд абсолютно сходится на всей числовой прямой. 2Разложение sinx и cosx В степенной ряд Маклорена сходится на всей числовой оси сходится на всей числовой оси 3. f(x) = (1+x)a Наз. биномиальный ряд с показателем a Различают 2 случая: 1- a Î N, тогда при любом х все члены ф-лы исчезают, начиная с (a +2) поэтому ряд Маклорена содержит конечное число членов и сходится при всех х. Получается формула Бинома Невтона: , где биномиальный коэффициент. 2- a Î R> N (a ¹ 0 х ¹ 0) и ряд сходится абсолютно при |x|> 1 4 Разложение ф-ции ln(1+x) сходится при –1< x< =1 5 Разложение arctgx в степенной ряд Маклорена |
Последнее изменение этой страницы: 2020-02-17; Просмотров: 116; Нарушение авторского права страницы